The influence of noise exposure on the parameters of a convolution model of the compound action potential ͑CAP͒ was examined. CAPs were recorded in normal-hearing gerbils and in gerbils exposed to a 117 dB SPL 8 kHz band of noise for various durations. The CAPs were fitted with an analytic CAP to obtain the parameters representing the number of nerve fibers ͑N͒, the probability density function ͓P͑t͔͒ from a population of nerve fibers, and the single-unit waveform ͓U͑t͔͒. The results showed that the analytic CAP fitted the physiologic CAPs well with correlations of approximately 0.90. A subsequent analysis using hierarchical linear modeling quantified the change in the parameters as a function of both signal level and hearing threshold. The results showed that noise exposure caused some of the parameter-level functions to simply shift along the signal level axis in proportion to the amount of hearing loss, whereas others shifted along the signal level axis and steepened. Significant changes occurred in the U͑t͒ parameters, but they were not related to hearing threshold. These results suggest that noise exposure alters the physiology underlying the CAP, some of which can be explained by a simple lack of gain, whereas others may not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.