An anaerobic microbial community was enriched in a chemostat that was operated for more than 8 years with benzene and nitrate as electron acceptor. The coexistence of multiple species in the chemostat and the presence of a biofilm, led to the hypothesis that benzene-degrading species coexist in a syntrophic interaction, and that benzene can be degraded in syntrophy by consortia with various electron acceptors in the same culture. The benzene-degrading microorganisms were identified by DNA-stable isotope probing with [U-(13) C]-labelled benzene, and the effect of different electron donors and acceptors on benzene degradation was investigated. The degradation rate constant of benzene with nitrate (0.7 day(-1) ) was higher than reported previously. In the absence of nitrate, the microbial community was able to use sulfate, chlorate or ferric iron as electron acceptor. Bacteria belonging to the Peptococcaceae were identified as dominant benzene consumers, but also those related to Rhodocyclaceae and Burkholderiaceae were found to be associated with the anaerobic benzene degradation process. The benzene degradation activity in the chemostat was associated with microbial growth in biofilms. This, together with the inhibiting effect of hydrogen and the ability to degrade benzene with different electron acceptors, suggests that benzene was degraded via a syntrophic process.
Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than 14 years on benzene with nitrate as electron acceptor. We determined steady state degradation rates, microbial community composition dynamics in the biofilm, and the initial anaerobic benzene degradation reactions. Benzene was degraded at a rate of 0.15 μmol/mg protein/day and a first-order rate constant of 3.04/day which was fourfold higher than rates reported previously. Bacteria belonging to the Peptococcaceae were found to play an important role in this anaerobic benzene-degrading biofilm culture, but also members of the Anaerolineaceae were predicted to be involved in benzene degradation or benzene metabolite degradation based on Illumina MiSeq analysis of 16S ribosomal RNA genes. Biomass retention in the reactor using a filtration finger resulted in reduction of benzene degradation capacity. Detection of the benzene carboxylase encoding gene, abcA, and benzoic acid in the culture vessel indicated that benzene degradation proceeds through an initial carboxylation step.Electronic supplementary materialThe online version of this article (doi:10.1007/s00253-017-8214-8) contains supplementary material, which is available to authorized users.
AquaTerra is one of the first environmental projects within the 6th Framework program by the European Commission. It began in June 2004 with a multidisciplinary team of 45 partner organizations from 13 EU countries, Switzerland, Serbia, Romania and Montenegro. Results from sampling and modeling in 4 large river basins (Ebro, Danube, Elbe and Meuse) and one catchment of the Brévilles Spring in France led to new evaluations of diffuse and hotspot input of persistent organic and metal pollutants including dynamics of pesticides and polycyclic aromatic hydrocarbons, as well as metal turnover and accumulation. While degradation of selected organic compounds could be demonstrated under controlled conditions in the laboratory, turnover of most persistent pollutants in the field seems to range from decades to centuries. First investigations of long-term cumulative and degradation effects, particularly in the context of climate change, have shown that it is also necessary to consider the predictions of more than one climate model when trying to assess future impacts. This is largely controlled by uncertainties in climate model responses. It is becoming evident, however, that changes to the climate will have important impacts on the diffusion and degradation of pollutants in space and time that are just at the start of their exploration. contaminants / organic / inorganic / European river basins / climate change / sorption / biodegradation / soil / sediment / ground-and surface water / heavy metals / review / pesticides / atrazine / isoproturon / alkyphenol / acetochlor / chlortoluron / organochlorine / Br diphenyl ethers / drugs / TOF mass spectrometry / 87Sr * Corresponding author: johannes.barth@uni-tuebingen.de 2 J.A.C. Barth et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.