Extreme concentration of marine biodiversity and exploitation of marine resources in the Coral Triangle pose challenges to biogeographers and resource managers. Comparative phylogeography provides a powerful tool to test biogeographic hypotheses evoked to explain species richness in the Coral Triangle. It can also be used to delineate management units for marine resources. After about a decade of phylogeographical studies, patterns for the Coral Triangle are emerging. Broad connectivity in some species support the notion that larvae have maintained gene flow among distant populations for long periods. Other phylogeographic patterns suggest vicariant events resulting from Pleistocene sea level fluctuations, which have, at least occasionally, resulted in speciation. Divergence dates ranging back to the Miocene suggest that changing land configurations may have precipitated an explosion of species diversification. A synthesis of the marine phylogeographic studies reveals repeated patterns that corroborate hypothesized biogeographic processes and suggest improved management schemes for marine resources.
The higher-level taxonomy of the stingrays (Dasyatidae) has never been comprehensively reviewed. Recent phylogenetic studies, supported by morphological data, have provided evidence that the group is monophyletic and consists of four major subgroups, the subfamilies Dasyatinae, Neotrygoninae, Urogymninae and Hypolophinae. A morphologically based review of 89 currently recognised species, undertaken for a guide to the world's rays, indicated that most of the currently recognised dasyatid genera are not monophyletic groups. These findings were supported by molecular analyses using the NADH2 gene for about 77 of these species, and this topology is supported by preliminary analyses base on whole mitochondrial genome comparisons. These molecular analyses, based on data generated from the Chondrichthyan Tree of Life project, are the most taxon-rich data available for this family. Material from all of the presently recognised genera (Dasyatis, Pteroplatytrygon and Taeniurops [Dasyatinae]; Neotrygon and Taeniura [Neotrygoninae]; Himantura and Urogymnus [Urogymninae]; and Makararaja and Pastinachus [Hypolophinae]), are included and their validity largely supported. Urogymnus and the two most species rich genera, Dasyatis and Himantura, are not considered to be monophyletic and were redefined based on external morphology. Seven new genus-level taxa are erected (Megatrygon and Telatrygon [Dasyatinae]; Brevitrygon, Fluvitrygon, Fontitrygon, Maculabatis and Pateobatis [Urogymninae], and an additional three (Bathytoshia, Hemitrygon and Hypanus [Dasyatinae]) are resurrected from the synonymy of Dasyatis. The monotypic genus Megatrygon clustered with 'amphi-American Himantura' outside the Dasyatidae, and instead as the sister group of the Potamotrygonidae and Urotrygonidae. Megatrygon is provisionally retained in the Dasyatinae pending further investigation of its internal anatomy. The morphologically divergent groups, Bathytoshia and Pteroplatytrygon, possibly form a single monophyletic group so further investigation is needed to confirm the validity of Pteroplatytrygon. A reclassification of the family Dasyatidae is provided and the above taxa are defined based on new morphological data.
A new whipray, Himantura randalli sp. nov., described from material collected off Bahrain, Kuwait and Qatar, appearsto be endemic to the Persian Gulf. It has been frequently confused with forms of the more widely distributed whiprayHimantura gerrardi Gray and other presently unidentified species from the Indian Ocean. Himantura randalli sp. nov. isdistinguished from these species by a combination of characters, i.e. disc shape, morphometrics, squamation (includingits rapid denticle development and denticle band shape), plain dorsal disc coloration, and whitish saddles on a dark tail inyoung. It is a medium-sized whipray with a maximum confirmed size of 620 mm disc width (DW) and a birth size ofaround 150–170 mm DW. Males mature at approximately 400 mm DW. Himantura randalli sp. nov. is relatively abundantin the shallow, soft-sedimentary habitats of the Persian Gulf from where it is commonly taken as low-value or discarded bycatch of gillnet and trawl fisheries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.