Now a days Internet and Web technologies providing students opportunities for flexible interactivity with study materials, peers and instructors. And also generating large amounts of usage data that can be processed and reveal behavioral patterns of study and learning. In this paper, to predict course performance we extracted data from a Moodlebased blended learning course and build a student model. Classification and Regression Trees (CART) decision tree algorithm was used to classify students and predict those at risk, based on the impact of four online activities: message exchanging, group wiki content creation, course files opening and online quiz taking. The correct classifications in results prove that the model is sensitive to categorize very specific groups at risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.