We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS-North, GOODS-South, UDS, and COSMOS obtained within the GOODS-Herschel and CANDELS-Herschel key programs. The star formation picture provided by a total of 10 497 individual far-infrared detections is supplemented by the stacking analysis of a mass complete sample of 62 361 starforming galaxies from the Hubble Space Telescope (HST) H band-selected catalogs of the CANDELS survey and from two deep ground-based K s band-selected catalogs in the GOODS-North and the COSMOS-wide field to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history. We show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation and describe our method called "scatter stacking", which may be easily generalized to other experiments. The combination of direct UV and far-infrared UV-reprocessed light provides a complete census on the star formation rates (SFRs), allowing us to demonstrate that galaxies at z = 4 to 0 of all stellar masses (M * ) follow a universal scaling law, the so-called main sequence of star-forming galaxies. We find a universal close-to-linear slope of the log 10 (SFR)-log 10 (M * ) relation, with evidence for a flattening of the main sequence at high masses (log 10 (M * /M ) > 10.5) that becomes less prominent with increasing redshift and almost vanishes by z 2. This flattening may be due to the parallel stellar growth of quiescent bulges in star-forming galaxies, which mostly happens over the same redshift range. Within the main sequence, we measure a nonvarying SFR dispersion of 0.3 dex: at a fixed redshift and stellar mass, about 68% of star-forming galaxies form stars at a universal rate within a factor 2. The specific SFR (sSFR = SFR/M * ) of star-forming galaxies is found to continuously increase from z = 0 to 4. Finally we discuss the implications of our findings on the cosmic SFR history and on the origin of present-day stars: more than two-thirds of present-day stars must have formed in a regime dominated by the "main sequence" mode. As a consequence we conclude that, although omnipresent in the distant Universe, galaxy mergers had little impact in shaping the global star formation history over the last 12.5 billion years.
We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3-500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡L tot IR /L 8 ), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population (<20%) is shown to consist of starbursts with compact projected star formation densities. IR8 can be used to separate galaxies with normal and extended modes of star formation from compact starbursts with high-IR8, high projected IR surface brightness (Σ IR > 3 × 10 10 L kpc −2 ) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 Å size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L tot IR ≥ 10 11 L ), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the "normal" main sequence mode. This confusion between two modes of star formation is the cause of the so-called "mid-IR excess" population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T dust ∼ 15-50 K), and an effective T dust ∼ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T dust ∼ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.
We analyze the dependence of galaxy structure (size and Sersic index) and mode of star formation (Σ SF R and SF R IR /SF R UV ) on the position of galaxies in the SFR versus Mass diagram. Our sample comprises roughly 640000 galaxies at z ∼ 0.1, 130000 galaxies at z ∼ 1, and 36000 galaxies at z ∼ 2. Structural measurements for all but the z ∼ 0.1 galaxies are based on HST imaging, and SFRs are derived using a Herschel-calibrated ladder of SFR indicators. We find that a correlation between the structure and stellar population of galaxies (i.e., a 'Hubble sequence') is already in place since at least z ∼ 2.5. At all epochs, typical star-forming galaxies on the main sequence are well approximated by exponential disks, while the profiles of quiescent galaxies are better described by de Vaucouleurs profiles. In the upper envelope of the main sequence, the relation between the SFR and Sersic index reverses, suggesting a rapid build-up of the central mass concentration in these starbursting outliers. We observe quiescent, moderately and highly star-forming systems to co-exist over an order of magnitude or more in stellar mass. At each mass and redshift, galaxies on the main sequence have the largest size. The rate of size growth correlates with specific SFR, and so does Σ SF R at each redshift. A simple model using an empirically determined SF law and metallicity scaling, in combination with an assumed geometry for dust and stars is able to relate the observed Σ SF R and SF R IR /SF R UV , provided a more patchy dust geometry is assumed for high-redshift galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.