Brain inspired memory prototypes, such as atomristors, are touted as next generation two terminal memories for neuromorphic computation. To make rapid progress toward developing such atomic scale memory, a facile technique to fabricate atomristor prototypes has to be developed. In this work, one such simple and lithography free technique to fabricate an atomristor prototype using photoexfoliated monolayer molybdenum di-sulfide (MoS2) is illustrated. Resistive switching characteristics of the atomristor were demonstrated by applying a write voltage pulse of 10 (SET) and −5 V (RESET) for 100 s between the active tantalum di-sulfide (TaS2) and inert indium tin oxide electrodes. During the SET process (ON state), the Ta2+ ions from the active electrode diffuse through monolayer MoS2 to create a number of parallel conducting channels. The persistence of the conducting channel even after removing the SET bias drives the atomristor to the low resistance state. On applying the “RESET” bias, the device resistance increased by a factor of five possibly due to the rupturing of the conducting channel. On cyclically applying the “SET” and “RESET” biases, the device was switched between low and high resistance states with excellent repeatability. Interestingly, it was also observed that the switching ratio increased on increasing the SET bias making this device a promising candidate for realizing tunable write once read many (WORM) memory devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.