21The design, realization and operation of a prototype or "demonstrator" version of an active target and time projection chamber (ACTAR TPC) for experiments in nuclear physics is presented in detail. The heart of the detection system features a micromegas gas amplifier coupled to a high-density pixelated pad plane with square pad sizes of 2×2 mm 2 . The detector has been thoroughly tested with several different gas mixtures over a wide range of pressures and using a variety of sources of ionizing radiation including laser light, an α-particle source and heavy-ion beams of 24 Mg and 58 Ni accelerated to energies of 4.0 MeV/u. Results from these tests and characterization of the detector response over a wide range of operating conditions will be described. These developments have served as the basis for the design of a larger detection system that is presently under construction.1
The ACtive TARget and Time Projection Chamber (ACTAR TPC) is a novel gas-filled detector that has recently been constructed at GANIL. This versatile detector is a gaseous thick target that allows the tracking of charged particles in three dimensions and provides a precise reaction energy reconstruction from the vertex position. A commissioning experiment using resonant scattering of a 3.2 MeV/nucleon 18 O beam on an isobutane gas (proton) target was performed. The beam and the heavy scattered ions were stopped in the gas volume, while the light recoil left the active volume and were stopped in auxiliary silicon detectors. A dedicated tracking algorithm was applied to determine the angle of emission and the length of the trajectory of the ions, to reconstruct the reaction kinematics used to built the excitation functions of the 1 H( 18 O, 18 O) 1 H and 1 H( 18 O, 15 N) 4 He reactions. In this article, we describe the design of the detector and the data analysis, that resulted in center of mass reaction energy resolutions of 38(4) keV FWHM and 54(9) keV FWHM for the proton and alpha channels, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.