International audienceOn the basis of a 2-year comprehensive data set obtained within the CARBOSOL project, seasonal source apportionment of PM2.5 aerosol is attempted for five rural/remote sites in Europe. The approach developed combines radiocarbon measurements with bulk measurements of organic carbon (OC), elemental carbon (EC), and two organic tracers (levoglucosan and cellulose). Source types are lumped into primary emissions from fossil fuel combustion and biomass burning, bioaerosol, and secondary organic aerosol from precursors emitted by fossil and nonfossil sources. Bulk concentration ratios reported for these source types in the literature are used to estimate the source contributions which are constrained by measured radiocarbon concentrations. It has been found that while fossil-related sources predominate EC throughout the year at all sites, the sources of OC are primarily biogenic and markedly different between summer and winter. In winter biomass burning primary emission is the main source, with sizable additional contribution from fossil fuel combustion. In contrast, in summer secondary organic aerosol (SOA) from nonfossil sources becomes predominant (63–76% of TC), with some contribution of SOA from fossil fuel combustion. The results agree well with recent findings of other authors who established the predominance of biogenic SOA for rural sites in summer in Europe. An uncertainty analysis has been conducted, which shows that the main conclusions from this study are robust
[1] Dissolved organic carbon (DOC) and an extended array of organic compounds were investigated in an Alpine ice core covering the 1920-1988 time period. Based on this, a reconstruction was made of the long-term trends of water-soluble organic carbon (WSOC) aerosol in the European atmosphere. It is shown that light mono-and dicarboxylates, humic-like substances, and formaldehyde account together for more than half of the DOC content of ice. This extended chemical speciation of DOC is used to estimate the DOC fraction present in ice that is related to WSOC aerosol and its change over the past. It is suggested that after World War II, the WSOC levels have been enhanced by a factor of 2 and 3 in winter and summer, respectively. In summer, the fossil fuel contribution to the enhancement is estimated to be rather small, suggesting that it arises mainly from an increase in biogenic sources of WSOC.
Abstract. Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m-thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ 18 O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analyzed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb-derived tritium removing any ice accumulated since, at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses rendered radiocarbon dating inconclusive, though a crude estimate gave a basal ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 2 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cryocalcite layers, extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ 18 O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.
[1] Radiocarbon ( 14 C) has proven to be a powerful tool in distinguishing modern and fossil fuel sources contributing to organic aerosols. By applying this concept to ice core records of the dissolved organic carbon (DOC) fraction, we developed a setup dedicated to the extraction of DOC from Alpine ice core samples for 14 C microanalysis. With respect to the difficulties and limitations of this analytical method, it is shown that a total process blank mass of (6 AE 3) mgC with a 14 C signature of (0.71 AE 0.17) can be obtained, corresponding to a minimum sample size between 200 g for industrial and 800 g for pre-industrial ice. Radiocarbon analyses of eight DOC ice core samples from the high accumulation glacier Col du Dôme (European Alps) were mainly performed over the bomb-peak period. These data, being associated with snow deposition over the summer half-years, show an overall mean fossil contribution of (25 AE 9) %. Adaptation of the DO 14 C values to the atmospheric 14 CO 2 record revealed that the biogenic input to ice core DOC is associated with a fast recycling biospheric component, likely linked to a turnover time of less than 3 years.Citation: May, B., D. Wagenbach, H. Hoffmann, M. Legrand, S. Preunkert, and P. Steier (2013), Constraints on the major sources of dissolved organic carbon in Alpine ice cores from radiocarbon analysis over the bomb-peak period,
The study of chemical impurities trapped in solid precipitation and accumulated in polar ice sheets and high-elevation, midlatitude cold glaciers over the last several hundreds of years provides a unique way to reconstruct our changing atmosphere from the preindustrial era to the present day. Numerous ice core studies of inorganic species have already evaluated the effects of growing anthropogenic emissions of SO(2) or NO(x) on the chemical composition of the atmosphere in various regions of the world. While it was recently shown that organic species dominate the atmospheric aerosol mass, the contribution of anthropogenic emissions to their budget remains poorly understood. The study of organics in ice is at the infancy stage, and it still is difficult to draw a consistent picture of the organic content of polar ice from sparse available data. A UV oxidation method and IR quantification of CO(2) was optimized to obtain measurements of dissolved organic carbon content as low as a few ppbC. Stringent working conditions were defined to prevent contamination during the cleaning of ice. Measurements in various ice cores corresponding to preindustrial times revealed dissolved organic carbon content of less than 10 ppbC in Antarctica and up to 75 ppbC in alpine ice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.