Introduction:Mitochondrial dysfunction and consequent cellular energetic failure play a key role in the development of sepsis-related organs failure. Evidence suggests that the pleiotropic effects of levosimendan may positively affect cellular metabolism during septic shock.Objectives:To investigate changes in the concentration of glucose, lactate, pyruvate, and glycerol in the extracellular fluid of the skeletal muscle following levosimendan administration in patients with septic shock.Methods:The study was designed as a prospective, double-blind, controlled, clinical pilot trial and performed in a multidisciplinary intensive care unit. After achieving normovolemia and a mean arterial pressure of at least 65 mm Hg, 20 septic shock patients were randomized to receive either levosimendan 0.2 μg/kg/min (n = 10), or dobutamine 5 μg/kg/min as active comparator (n = 10). Interstitial tissue concentrations of lactate, pyruvate, glucose, and glycerol were obtained by using muscle microdialysis. All measurements, including data from right heart catheterization, were obtained at baseline and every 6 h for the following 72 h after randomization.The trial is registered with Clinicaltrials.gov, number NCT02963454.Results:Compared with dobutamine, levosimendan increased interstitial tissue pyruvate concentration (153.3 ± 73 and 187. 2 ± 13.5 vs. 210.7 ± 76.2 and 161 ± 64.6; P < 0.05), and lactate clearance (55 vs. 10). Lactate/pyruvate ratio was lower in the levosimendan group at the end of study period (37. 7 ± 18.9 and 29.3 ± 12.7 vs. 10.9 ± 4.5 and 31.4 ± 13. 2; P < 0.05).Conclusion:Although we investigated a small number of patients, our preliminary results suggest that levosimendan may improve cellular metabolic alterations in patients with septic shock.
In this study, Forty-one out of fifty-seven Tunisian children with B-lineage acute lymphoblastic leukemia (B-ALL), and without cytogenetically detectable recurrent abnormalities at the time of the diagnosis, were evaluated by fluorescence in situ hybridization (FISH) for the t(12;21). This translocation leads ETV6-RUNX1 (previously TEL-AML1) fusion gene. 16 patients (28%) had ETV6-RUNX1 rearrangement. In addition to this rearrangement, two cases showed a loss of the normal ETV6 allele, and three others showed an extra signal of the RUNX1 gene.
Seven patients without ETV6-RUNX1 rearrangement showed extra signals of the RUNX1 gene. One out of the 7 patients was also associated with a t(3;12) identified by FISH. This is the first Tunisian study in which we report the incidence of t(12;21) among childhood B-lineage ALL and in which we have found multiple copies of RUNX1.
Finally, our findings confirm that additional or secondary genetic changes are commonly encountered in pediatric B-lineage ALL with ETV6-RUNX1 gene fusion which is envisaged to play a pivotal role in disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.