Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam
Nonlinear dynamical systems, being more of a realistic representation of nature, could exhibit a somewhat complex behavior. Their analysis requires a thorough investigation into the solution of the governing differential equations. In this paper, a class of third order nonlinear differential equations has been analyzed. An attempt has been made to obtain sufficient conditions in order to guarantee the existence of periodic solutions. The results obtained from this analysis are shown to be beneficial when studying the steady-state response of nonlinear dynamical systems. In order to obtain the periodic solutions for any form of third order differential equations, a computer program has been developed on the basis of the fourth order Runge-Kutta method together with the Newton-Raphson algorithm. Results obtained from the computer simulation model confirmed the validity of the mathematical approach presented for these sufficient conditions,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.