Curcumin, the bioactive component of turmeric, Curcuma longa has an exceptionally wide spectrum of activities including antioxidant, anti-inflammatory and anti-cancer properties, and is currently under different phases of clinical trials for various types of soft tissue cancers. However, although in vitro and animal studies have shown anticancer activities of curcumin for virtually all types of human cancers, its poor bioavailability in the human body has severely limited its application to these diseases. Methods to increase its oral bioavailability are a subject of intense current research. Reconstituting curcumin with the non-curcuminoid components of turmeric has been found to increase the bioavailability substantially. In the present clinical study to determine the bioavailability of curcuminoids, a patented formulation, BCM-95®CG was tested on human volunteer group. Normal curcumin was used in the control group. Curcumin content in blood was estimated at periodical intervals. After a washout period of two weeks the control group and drug group were crossed over BCM-95®CG and curcumin, respectively. It was also compared with a combination of curcumin-lecithin-piperine which was earlier shown to provide enhanced bioavailability. The results of the study indicate that the relative bioavailability of BCM-95®CG (Biocurcumax™) was about 6.93-fold compared to normal curcumin and about 6.3-fold compared to curcumin-lecithin-piperine formula. BCM-95®CG thus, has potential for widespread application for various chronic diseases.
Emblica officinalis, commonly known as Indian gooseberry (Amla), is found to be effective for the reversal of dyslipidemia and intima-media thickening and plaque formation in the aorta in hypercholesterolaemic rabbits. In this study, cholesterol powder (100 mg/kg body weight) was administered orally to healthy NZ white rabbits for 4 mo to induce hypercholesterolaemia; and thereafter, amla extract was given in two doses (10 mg and 20 mg/kg/ d orally) for 4 mo. Fasting lipid profile was done monthly and also at the end of treatment. After sacrificing the animals, tissue cholesterol (liver, heart and kidney) and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase activity of liver were estimated and part of aorta and myocardium were processed for histological studies. Feeding of amla extract (10 mg and 20 mg/kg) for 4 mo reversed these changes and the lumen of the aorta became normal as in the normal control group. Reversal of dyslipidemia and atheromatous plaques achieved by amla extract seems to be brought about by a number of factors, such as its ability to prevent low-density lipoprotein oxidation, its antioxidant action, besides decreasing synthesis of cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-Coenzyme A reductase activity and elevating high-density lipoprotein level to enhance reverse cholesterol transport.
Hypercholesterolemia is the major cause of cardiovascular diseases leading to myocardial infarctions leading to considerable morbidity and mortality. During the past decade a group of molecules referred to as statins such as simvastatin, atrovastatin have been tried with great success in reducing total cholesterol. These molecules act by inhibiting the HMG CoA reductase enzyme thereby interfering with the synthesis of cholesterol. But statins reduce all the cholesterol including HDL cholesterol. Long term drug vigilance activity has revealed serious side effects of tendinopathy and related musculoskeletal disorders in some of the subjects. In an effort to manage hypercholesterolemia without serious side effects in a natural way we had tried the use of Amlamax™ a reconstituted, purified, standardized dried extract of amla (Emblica officinalis) containing 30% ellagitannins with other hydrolysable tannins on humans. We report the hitherto unobserved significant elevation of HDL cholesterol by the administration of Amlamax™
The present study was conducted to evaluate the hepatoprotective effects of the Centella asiatica extract in carbon tetrachloride-induced liver injury in rats. Sprague Dawley rats were treated with alcohol extract of Centella asiatica orally in two doses (20 and 40 mg/kg/day) for 3 mo along with intraperitoneal injection of carbon tetrachloride (1 ml/kg). Biochemical parameters such as serum total protein, albumin and marker enzymes (aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase) were estimated both before and after the experiment. Histopathological studies of liver were also carried out to confirm the biochemical changes. Carbon tetrachloride-induced hepatotoxic effects were evident by a significant (p < 0.05) increase in the serum marker enzymes and a decrease in the total serum protein and albumin. Administration of extract of Centella asiatica effectively inhibited these changes in a dose-dependent manner; maximum effect was with 40 mg/kg. Histopathological examination of liver tissue corroborated well with the biochemical changes. Hepatic steatosis, hydropic degeneration and necrosis were observed in carbon tetrachloride-treated group, while these were completely absent in the treatment group. Centella asiatica extract exhibited hepatoprotective action against carbon tetrachloride-induced liver injury. This effect is attributed to the presence of asiaticoside (14.5%) in the Centella asiatica (Linn) Urban, Synonym Hydrocotyle
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.