We investigate the interplay between confinement and the fermion doubling problem in Dirac-like Hamiltonians. Individually, both features are well known. First, simple electrostatic gates do not confine electrons due to the Klein tunneling. Second, a typical lattice discretization of the firstorder derivative k → −i∂x skips the central point and allow spurious low-energy, highly oscillating solutions known as fermion doublers. While a no-go theorem states that the doublers cannot be eliminated without artificially breaking a symmetry, here we show that the symmetry broken by the Wilson's mass approach is equivalent to the enforcement of hard-wall boundary conditions, thus making the no-go theorem irrelevant when confinement is foreseen. We illustrate our arguments by calculating the following: (i) the band structure and transport properties across thin films of the topological insulator Bi2Se3, for which we use ab-initio density functional theory calculations to justify the model; and (ii) the band structure of zigzag graphene nanoribbons. arXiv:1708.03514v2 [cond-mat.mes-hall]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.