Pancreatic cancers with aberrant expression of macrophage migration inhibitory factor (MIF) are particularly aggressive. To identify key signaling pathways that drive disease aggressiveness in tumors with high MIF expression, we analyzed the expression of coding and non-coding genes in high and low MIF-expressing tumors in multiple cohorts of pancreatic ductal adenocarcinoma (PDAC) patients. The key genes and pathways identified were linked to patient survival and were mechanistically, functionally and clinically characterized using cell lines, a genetically engineered mouse model and PDAC patient cohorts. Here we report evidence of a novel MIF-driven signaling pathway that inhibits the orphan nuclear receptor NR3C2, a previously undescribed tumor suppressor that impacts aggressiveness and survival in PDAC. Mechanistically, MIF upregulated miR-301b which targeted NR3C2 and suppressed its expression. PDAC tumors expressing high levels of MIF displayed elevated levels of miR-301b and reduced levels of NR3C2. Additionally, reduced levels of NR3C2 expression correlated with poorer survival in multiple independent cohorts of PDAC patients. Functional analysis showed that NR3C2 inhibited epithelial-to-mesenchymal transition and enhanced sensitivity to the gemcitabine, a chemotherapeutic drug used in PDAC standard of care. Furthermore, genetic deletion of MIF disrupted a MIF-mir-301b-NR3C2 signaling axis, reducing metastasis and prolonging survival in a genetically engineered mouse model of PDAC. Taken together, our results offer a preclinical proof-of-principle for candidate therapies to target a newly described MIF-miR-301b-NR3C2 signaling axis for PDAC management.
Our results suggest that pretherapeutic gene expression profiling may assist in response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. The implementation of gene expression profiles for treatment stratification and clinical management of cancer patients requires validation in large, independent studies, which are now warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.