We have developed a radiation-hardened, highly linear, wideband, low-noise amplifier (LNA) with programmable gain to serve as the front-end of a plasma-wave instrument for satellite-based electric-field measurements of very low frequency (VLF) phenomena in the Van Allen radiation belts. Fabricated in a commercial 0.25-m silicon-germanium BiCMOS process, this ASIC leverages radiation-hardness-by-design techniques at the topological, implementation, and layout levels to maintain 75-dB spurious-free dynamic range (SFDR) over nearly four decades of frequency, from 100 Hz to 1 MHz, for both proton and -ray total ionizing dose (TID) exposures up to 1000 krad(Si). Single-event effect (SEE) testing via pulsed laser confirms negligible latchup sensitivity and suppression of single-event transients(SETs) at the output for beam energy LET equivalents in excess of 100 MeV-cm 2 /mg in even the most sensitive regions of the die.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.