High-affinity glycine transport in neurons and glial cells is a primary means of inactivating synaptic glycine. We have synthesized a potent selective inhibitor of glycine transporter 1 (GlyT1), and characterized its activity using a quail fibroblast cell line (QT6). The glycine transporters GlyT1A, GlyT1B, GlyT1C, and GlyT2 were stably expressed in QT6 cells. The transporters expressed in these cells exhibited appropriate characteristics as described previously for these genes: Na(+)/Cl(-) dependence, appropriate K(m) values for glycine uptake, and appropriate pharmacology, as defined in part by the ability of N-methyl glycine (sarcosine) to competitively inhibit glycine transport. Furthermore, the characteristics of the transporters in the cell lines recapitulate the characteristics of glycine transporters observed in tissue preparations. We developed a sarcosine derivative, (R)-(N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine (ALX 5407), and examined its activity against the cloned glycine transporters. ALX 5407 completely inhibited glycine transport in the GlyT1 cells, with an IC(50) value of 3 nM, but had little or no activity at the human GlyT2 transporter, at other binding sites for glycine, or at other neurotransmitter transporters. The inhibition of glycine transport was essentially irreversible. ALX 5407 represents a novel tool in the investigation of N-methyl-D-aspartate-receptor function. This class of drug may lead to novel therapies in the treatment of schizophrenia.
The adrenergic receptor subtypes involved in cyclic AMP responses to norepinephrine (NE) were compared between slices of rat cerebral cortex and primary neuronal and glial cultures from rat brain. In neuronal cultures, NE and the beta-adrenergic receptor agonist isoproterenol (ISO) caused similar increases in cyclic AMP, which were not altered by the alpha-adrenergic receptor antagonist phentolamine. In glial cultures, NE caused a much smaller cyclic AMP response than did ISO, and this difference was reversed by alpha-adrenergic receptor antagonists (phentolamine greater than yohimbine greater than prazosin). alpha 2-Adrenergic receptor agonists partially inhibited the ISO response in glial cultures to a level similar to that observed with NE alone (clonidine = UK 14,304 greater than NE greater than 6-fluoro-NE greater than epinephrine). In slices from cerebral cortex, NE caused a much larger increase in cyclic AMP than did ISO, and this difference was reversed by alpha-adrenergic receptor antagonists with a different order of potency (prazosin greater than phentolamine greater than yohimbine). alpha 1-Adrenergic receptor agonists potentiated the response to ISO to a level similar to that observed with NE alone (epinephrine = NE greater than phenylephrine greater than 6-fluoro-NE greater than methoxamine). In all three tissue preparations, large responses to both alpha 1-receptor activation (increases in inositol phosphate accumulation) and alpha 2-receptor activation (decreases in forskolin-stimulated cyclic AMP accumulation) were observed. These data indicate that all of the major adrenergic receptor subtypes (beta, alpha 1, alpha 2) are present in each tissue preparation.(ABSTRACT TRUNCATED AT 250 WORDS)
Urinary excretion of cyclic adenosine monophosphate (cAMP) is assessed in response to pitressin stimulation in three patients with nephrogenic diabetes insipidus, four carriers and seven controls. There is no significant difference in cAMP excretion between these groups when corrected for surface area, nor is there any significant increase in excretion after pitressin stimulation. There is very close correlation between urinary cAMP and both urinary concentration and urinary creatinine excretion. Urinary cAMP after pitressin stimulation does not discriminate between carriers of nephrogenic diabetes insipidus and control subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.