This correspondence discusses an extension of the well-known phase correlation technique to cover translation, rotation, and scaling. Fourier scaling properties and Fourier rotational properties are used to find scale and rotational movement. The phase correlation technique determines the translational movement. This method shows excellent robustness against random noise.
We have presented an alternate ANN structure called functional link ANN (FLANN) for nonlinear dynamic system identification using the popular backpropagation algorithm. In contrast to a feedforward ANN structure, i.e., a multilayer perceptron (MLP), the FLANN is basically a single layer structure in which nonlinearity is introduced by enhancing the input pattern with nonlinear functional expansion. With proper choice of functional expansion in a FLANN, this network performs as good as and in some cases even better than the MLP structure for the problem of nonlinear system identification.
A new set of two-dimensional (2-D) rotated complex wavelet filters (RCWFs) are designed with complex wavelet filter coefficients, which gives texture information strongly oriented in six different directions (45 degrees apart from complex wavelet transform). The 2-D RCWFs are nonseparable and oriented, which improves characterization of oriented textures. Most texture image retrieval systems are still incapable of providing retrieval result with high retrieval accuracy and less computational complexity. To address this problem, we propose a novel approach for texture image retrieval by using a set of dual-tree rotated complex wavelet filter (DT-RCWF) and dual-tree-complex wavelet transform (DT-CWT) jointly, which obtains texture features in 12 different directions. The information provided by DT-RCWF complements the information generated by DT-CWT. Features are obtained by computing the energy and standard deviation on each subband of the decomposed image. To check the retrieval performance, texture database D1 of 1856 textures from Brodatz album and database D2 of 640 texture images from VisTex image database is created. Experimental results indicates that the proposed method improves retrieval rate from 69.61% to 77.75% on database D1, and from 64.83% to 82.81% on database D2, in comparing with traditional discrete wavelet transform based approach. The proposed method also retains comparable levels of computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.