We investigated point defects induced in rad-hard Fluorine-doped optical fibers using both a mixed source of neutrons (fluences from 1015 to 1017 n/cm2) and γ-rays (doses from 0.02 to 2 MGy) and by a γ-ray source (dose up to 10 MGy). By combining several complementary spectroscopic techniques such as radiation-induced attenuation, confocal micro-luminescence, time-resolved photo-luminescence and electron paramagnetic resonance, we evidenced intrinsic and hydrogen-related defects. The comparison between the two irradiation sources highlights\ud
close similarities among the spectroscopic properties of the induced defects and the linear correlation of their concentration up to 1016 n/cm2. These results are interpreted on the basis of the generation processes of defects from precursors sites, that are common to both γ-rays and neutrons. In contrast, the highest neutron fluence (1017 n/cm2) causes peculiar effects, such as the growth of a photoluminescence and variations of the spectral and decay properties of the emission related with nonbridging oxygen hole centers, that are likely due to silica network modification
We report the study of a radiation resistant single mode optical fiber doped with fluorine exposed to mixed neutron and gamma-radiation up to 10(17) n/cm(2) fluence and >2 MGy dose to evaluate its performances when used as the sensing element of a distributed Optical Frequency Domain Reflectometry (OFDR). The use of complementary spectroscopic techniques highlights some differences between the responses of solely gamma-radiation (10 MGy) or mixed neutron and. (10(17) n/cm2 + >2 MGy) irradiated samples. Those differences are linked to the defect generation rather than to structural changes of the a-SiO2 host matrix. We show that a modification of the refractive index of similar to 10(-5) is induced at the highest investigated neutron fluence. However, the feasibility of distributed temperature measurements along the irradiated fiber is demonstrated with an accuracy of 0.1 degrees C over a sensing length up to similar to 130 m with the tested OBR4600 interrogator. These results are very promising for the integration of OFDR sensors in mixed neutron and gamma radiation environments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.