Abstract-This paper presents a novel test point insertion method for pseudorandom built-in self-test (BIST) to reduce the area overhead. The proposed method replaces dedicated flip-flops for driving control points by existing functional flip-flops. For each control point, candidate functional flip-flops are identified by using logic cone analysis that investigates the path inversion parity, logical distance, and reconvergence from each control point. Four types of new control point structures are introduced based on the logic cone analysis results to avoid degrading the testability. Experimental results indicate that the proposed method significantly reduces test point area overhead by replacing the dedicated flip-flops and achieves essentially the same fault coverage as conventional test point implementations using dedicated flip-flops driving the control points.
This paper presents a novel method for reducing the area overhead introduced by test point insertion. Test point locations are calculated as usual using a commercial tool. However, the proposed method uses functional flip-flops to drive control test points instead of test-dedicated flip-flops. Logic cone analysis that considers the distance and path inversion parity from candidate functional flip-flops to each control point is used to select an appropriate functional flip-flop to drive the control point which avoids adding additional timing constraints. Reconvergence is also checked to avoid degrading the testability. Experimental results indicate that the proposed method significantly reduces test point area overhead and achieves essentially the same fault coverage as the implementations using dedicated flipflops driving the control points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.