Power gating is effective for reducing standby leakage power as multi-threshold CMOS (MTCMOS) designs have become popular in the industry. However, a large inrush current and dynamic IR drop may occur when a circuit domain is powered up with MTCMOS switches. This could in turn lead to improper circuit operation. We propose a novel framework for generating a proper power-up sequence of the switches to control the inrush current of a powergated domain while minimizing the power-up time and reducing the dynamic IR drop of the active domains. We also propose a configurable domino-delay circuit for implementing the sequence. Experimental results based on state-ofthe-art industrial designs demonstrate the effectiveness of the proposed framework in limiting the inrush current, minimizing the power-up time, and reducing the dynamic IR drop. Results further confirm the efficiency of the framework in handling large-scale designs with more than 40 K power switches and 50 M transistors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.