Abstract. The intermittent character of turbulent transport is investigated with Langmuir probes in the scrape-off layer (SOL) and across the separatrix of ASDEX Upgrade Ohmic discharges. Radial profiles of plasma parameters are in reasonable agreement with results from other diagnostics. The probability density functions of ion-saturation current fluctuations exhibit a parabolic relation between skewness and kurtosis. Intermittent blobs and holes are observed outside and inside the nominal separatrix, respectively. They seem to be born at the edge of the plasma and are not the foothills of avalanches launched in the plasma core. A strong shear flow was observed 1 cm radially outside the location where blobs and holes seem to be generated. Blobs and holes in ASDEX Upgrade
Abstract.We present a method to obtain reliable edge proles of the electron temperature by forward modelling of the electron cyclotron radiation transport. While for the core of ASDEX Upgrade plasmas, straightforward analysis of electron cyclotron intensity measurements based on the optically thick plasma approximation is usually justied, reasonable analysis of the steep and optically thin plasma edge needs to consider broadened emission and absorption proles and radiation transport processes. This is done in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of dierent interdependent and complementary diagnostics.By this means, electron cyclotron radiation intensity delivers highly spatially resolved electron temperature data for the plasma edge. In H-mode, the edge gradient of the electron temperature can be several times higher than the one of the radiation temperature. Furthermore, we are able to reproduce the`shine-through' peak the observation of increased radiation temperatures at frequencies resonant in the optically thin scrape-o layer. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient.
Abstract. This paper presents turbulence investigations in the scrape off layer (SOL) of ASDEX Upgrade in Ohmic, L-mode and H-mode discharges using electrostatic and electromagnetic probes. Detailed studies are performed on small scale turbulence and on ELM filaments. Simultaneous measurements of floating and plasma potential fluctuations revealed significant differences between these quantities. Large errors can occur when the electric field is extracted from floating potential measurements, even in Ohmic discharges. Turbulence studies in Ohmic plasmas show the existence of density holes inside the separatrix and blobs outside. Close to the separatrix a reversal of the poloidal blob propagation velocity occurs. Investigations on the Reynolds stress in the scrape-off layer show its importance for the momentum transport in L-mode while its impact for momentum transport during ELMs in H-mode is rather small. In the far SOL the electron density and temperature were measured during type-I ELMy H-mode at ASDEX Upgrade resolving ELM filaments. Strong density peaks and temperatures of several 10 eV were detected during the ELM events. Additional investigations on the ions in the filaments by a retarding field analyzer indicate ion temperatures of 50-80 eV. ELMs expel also current concentrated in filaments into the scrape off layer. Furthermore discharges with small ELMs were studied. In N 2 seeded discharges the type-I ELM frequency rises and the ELM duration decreases. For discharges with small type-II ELMs the mean turbulent radial particle flux is increased over the mean particle flux in type-I ELM discharges at otherwise similar plasma parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.