Aim. Streptomyces albus J1074 is one of the most popular streptomycete chassis for heterologous expression of natural product (NP) biosynthetic gene clusters (BGCs). There is keen interest in further improvement of the strain to provide increased yields of corresponding NPs. Introduction of certain types of antibiotic resistance mutations is a proven way to improve Streptomyces strains. For example, selection for increased resistance to rifampicin is known to lead to increased antibiotic activity. Here we used available lineages of antibiotic-resistant mutants of S. albus to raise rifampicin-resistant variants (Rifr) and to study their properties. Methods. Microbiological and molecular genetic approaches were combined to generate Rifr mutants and to study their properties. Results. By plating S. albus onto GYM agar supplemented with 10 mcg/mL of rifampicin, we isolated 85 stable Rifr colonies, whose resistance level was within 10-200 mcg/mL range. Sequencing revealed wide spectrum of missense mutations within rpoB gene. Bioassays demonstrated dramatically increased endogenous antibiotic activity of certain Rifr mutants. Conclusions. Selection for rifampicin resistance is a viable way to increase the yields of NPs in S. albus. Keywords: Streptomyces albus J1074, antibiotic resistance, rifampicin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.