Yeast chromosomes terminate in tracts of simple repetitive DNA (poly[G1-3T]). Mutations in the gene TEL1 result in shortened telomeres. Sequence analysis of TEL1 indicates that it encodes a very large (322 kDa) protein with amino acid motifs found in phosphatidylinositol/protein kinases. The closest homolog to TEL1 is the human ataxia telangiectasia gene.
Entry into anaphase and proteolysis of B-type cyclins depend on a complex containing the tetratricopeptide repeat proteins Cdc16p, Cdc23p, and Cdc27p. This particle, called the anaphase-promoting complex (APC) or cyclosome, functions as a cell cycle-regulated ubiquitin-protein ligase. Two additional subunits of the budding yeast APC were identified: The largest subunit, encoded by the APC1 gene, is conserved between fungi and vertebrates and shows similarity to BIMEp from Aspergillus nidulans. A small heat-inducible subunit is encoded by the CDC26 gene. The yeast APC is a 36S particle that contains at least seven different proteins.
The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local gene density along the chromosome. Significant discrepancies with the previously published genetic map demonstrate the need for using independent physical mapping criteria.
The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.
Signal transduction by G-protein-coupled receptors is regulated by various mechanisms acting at the receptor level; those studied most thoroughly are from the beta-adrenergic receptor/Gs/adenylyl cyclase system. We report here a regulatory mechanism occurring at the level of the G proteins themselves. A protein with M(r) 33,000 that inhibits Gs-GTPase activity was purified from bovine brain. This protein is very similar or identical to phosducin, a protein previously thought to be specific for retina and pineal gland. Recombinant phosducin inhibited the GTPase activity of several G proteins, and also inhibited Gs-mediated adenylyl cyclase activation. Blockade of its inhibitory effects by protein kinase A suggests that phosducin may be part of a complex regulatory network controlling G-protein-mediated signalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.