The time course of the response of protein synthesis in muscle and liver to catabolic doses of corticosterone (10 mg/day per 100 g body wt.) was studied in vivo in growing rats over a 12-day period. The rate of protein synthesis in muscle and liver and the rate of actomyosin synthesis in muscle were measured by the phenylalanine-flooding technique, and 3-methylhistidine (N tau-methylhistidine) synthesis was measured by injection of labelled histidine. 3-Methylhistidine concentrations in tissue free pools and urinary excretion were also measured to compare directly with the rate of muscle protein degradation determined as the difference between synthesis and growth each day during the treatment. The overall rate of protein synthesis in muscle fell gradually over the first 4 days, reaching a rate after 5 days that was 36% of the initial rate, and this lower rate was then maintained for the following week. This decrease in the overall rate was accompanied with changes in the relative rate of synthesis in muscle proteins, since during the first 4 days there was a disproportionate decrease in the rate of actomyosin synthesis, and specifically 3-methylhistidine synthesis. In the latter case the synthesis rate was decreased to only 4% of its initial rate after 4 days. These changes in protein synthesis in muscle were accompanied by a transient increase in the rate of protein degradation, which was more than doubled on days 2 and 3 of treatment but which returned to the original rate on day 5, and a similar pattern of response was indicated by urinary 3-methylhistidine excretion, which also exhibited a transient increase. Thus in this case 3-methylhistidine excretion and measured rates of protein degradation in muscle do correlate. The transient effects of the glucocorticoids on degradation compared with the sustained effect on synthesis suggest that these two responses are achieved by different mechanisms. The hepatic size and protein mass were increased by the treatment, and protein synthesis was well maintained until after 12 days, when the rate was suppressed. Although the fractional synthesis rate was transiently increased for 24 h, it is argued that the enlarged liver most likely reflects a decrease in protein degradation resulting from the increased amino acid supply to the liver. This would result from the cessation of muscle growth while dietary supply was maintained.
Measurements of changes in muscle protein synthesis, insulin and corticosterone in vivo in refed food-deprived rats, some after pretreatment with anti-insulin serum or corticosterone, indicate that the acute increase in protein synthesis (20-40 min) requires (a) insulin, (b) a fall in corticosterone, since corticosterone acts at least in part by blocking insulin action, and (c) at least one other independent anabolic factor.
The effect of insulin infusion in vivo on muscle protein synthesis was investigated in rats. In 10-days-streptozotocin-diabetic rats infused in vivo with amino acids and glucose, the rate of protein synthesis per unit of RNA (RNA activity) was markedly decreased. Pre-treatment with large doses of insulin at 17 and 1 h before the infusion fully restored RNA activity to normal. Infusion of insulin for 6 h with amino acids and glucose did not restore RNA activity to normal in the diabetic rats. However, in diabetic-adrenalectomized rats similar infusions of insulin fully restored RNA activity to normal. Measurements of plasma corticosterone concentrations indicated a 50% increase in the diabetic rats. Since pre-treatment with corticosterone suppressed the stimulatory effect of insulin infusion on RNA activity in adrenalectomized rats, and since corticosterone treatment for 6 days suppressed RNA activity even though insulin concentrations were elevated, it is suggested that increased concentrations of corticosterone are responsible for the lag in response to insulin in the diabetic rat. This means that the catabolic effects of glucocorticoids must be also considered together with the catabolic effect of insulin lack in diabetes.
The effect of corticosterone on protein turnover in skeletal muscle was investigated in growing rats. Protein synthesis was measured in vivo by the constant infusion of [(14)C]tyrosine. The extent to which any effect of corticosterone is modulated by the hyperinsulinaemia induced by steroid treatment was examined by giving the hormone not only to adrenalectomized rats but also to streptozotocin-induced diabetic rats maintained throughout the treatment period on two dosages of insulin by an implanted osmotic minipump. Approximate rates of protein degradation were also estimated in some cases as the difference between synthesis and net change in muscle protein mass. Measurements were also made of free 3-methylhistidine concentration in muscle and plasma. At 10mg of corticosterone/100g body wt. per day, growth stopped and muscle wasting occurred, whereas at 5 mg of corticosterone/100g body wt. per day no net loss of protein occurred. However, this low dose did induce muscle wasting when insulin concentration was regulated by a dose of 1.2 units/day. Protein synthesis was markedly depressed in all treated groups, the depression in the insulin-maintained rats being marginally more than in the hyperinsulinaemic adrenalectomized rats. The oxidative soleus muscle appeared to be less susceptible to the effect of the corticosterone than was the more glycolytic plantaris or gastrocnemius muscle. Any effect of the corticosterone on protein degradation was much less than its effects on protein synthesis. Where increases in the degradation rates appeared to occur in the rats treated with 10mg of corticosterone/100g body wt. per day, the increases were less than 20%. The free intracellular 3-methylhistidine concentrations were doubled in all groups treated with 5 mg of corticosterone/100g body wt. per day and increased 5-fold in the adrenalectomized rats treated with 10mg of corticosterone/100g body wt. per day, with no change in plasma concentration in any of the groups. It is therefore concluded that: (a) the suppression of protein synthesis is the main effect of glucocorticoids in muscle; (b) marked increases in insulin afford only minor protection against this effect; (c) stimulation of protein degradation may occur, but to a much lesser extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.