Originally sodium-ion batteries (SIBs) were studied together with Li-ion batteries (LIBs) in pioneering work on intercalation chemistry during the 1970s and 1980s, [1][2][3][4][5] and have recently While sodium-ion batteries (SIBs) represent a low-cost substitute for Li-ion batteries (LIBs), there are still several key issues that need to be addressed before SIBs become market-ready. Among these, one of the most challenging is the negligible sodium uptake into graphite, which is the keystone of the present LIB technology. Although hard carbon has long been established as one of the best substitutes, its performance remains below that of graphite in LIBs and its sodium storage mechanism is still under debate. Many other carbons have been recently studied, some of which have presented capacities far beyond that of graphite. However, these also tend to exhibit larger voltage and high first cycle loss, leading to limited benefits in terms of full cell specific energy. Overcoming this concerning tradeoff necessitates a deep understanding of the charge storage mechanisms and the correlation between structure, microstructure, and performance. This review aims to address this by drawing a roadmap of the emerging routes to optimization of carbon materials for SIB anodes on the basis of a critical survey of the reported electrochemical performances and charge storage mechanisms.
Solid state electrolytes could address the current safety concerns of lithium-ion batteries as well as provide higher electrochemical stability and energy density.
A new orthophosphate α-Na2Ni2Fe(PO4)3 was synthesized using a solid state reaction route, and its crystal structure was determined from powder X-ray diffraction data. The physical properties of α-Na2Ni2Fe(PO4)3 were studied by magnetic and electrochemical measurements and by Mössbauer and Raman spectroscopy. α-Na2Ni2Fe(PO4)3 crystallizes according to a stuffed α-CrPO4-type structure with the space group Imma and the cell parameters a = 10.42821(12), b = 13.19862(15), c = 6.47634(8) Å, and Z = 4. The structure consists of a 3D-framework of octahedra and tetrahedra sharing corners and/or edges with channels along [100] and [010], in which the sodium atoms are located. The (57)Fe Mössbauer spectrum indicates that the Fe(3+) cation is distributed over two crystallographic sites implying the presence of a Ni(2+)/Fe(3+) statistical disorder. Magnetic susceptibility follows the Curie-Weiss behavior above 100 K with θ = -114.3 K indicating the occurrence of predominant antiferromagnetic interactions. Electrochemical tests indicate that during the first discharge to 1 V vs. Na(+)/Na in a sodium cell, one Na(+) ion could be inserted into the α-Na2Ni2Fe(PO4)3 structure. This has led to the formation of a new phase Na3Ni2Fe(PO4)3 which was found to be promising as a positive electrode material for sodium batteries. When α-Na2Ni2Fe(PO4)3 is further discharged to 0.03 V, it delivers a capacity of 960 mA h g(-1). This corresponds to the intercalation of more than seven sodium atoms per formula unit which is an indication of a conversion-type behaviour with the formation of metallic Fe and Ni. When cycled in the voltage range 0.03-3 V vs. Na(+)/Na, at 20 °C, under the current rates of 50, 100, 200, and 400 mA g(-1), reversible capacities of 238, 196, 153, and 115 mA h g(-1), were obtained, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.