The drying step of dense refractory castables containing hydraulic binders is a critical process, which usually requires using slow heating rates due to the high explosion trend of such materials during their first thermal treatment. Thus, this work investigated the performance of alternative additives to induce faster and safer drying of self-flowing high-alumina refractory castables bonded with calcium aluminate cement (CAC) or hydratable alumina (HA). The following materials were analyzed for this purpose: polymeric fibers, a permeability enhancing compound (RefPac MIPORE 20) and an organic additive (aluminum salt of 2hydroxypropanoic acid). The drying behavior and explosion resistance of the cured samples were evaluated when subjecting the prepared castables to heating rates of 2, 5 or 20°C/min and the obtained data were then correlated to the potential of the drying agents to improve the permeability and mechanical strength level of the refractories at different temperatures. The collected results attested that the selected additives were more efficient in optimizing the drying behavior of the CAC-bonded compositions, whereas the HA-containing castables performed better when the aluminum-based salt was blended with a small amount of CAC (0.5 wt.%), which changed the binders hydration reaction sequence and optimized the permeability level of the resulting microstructure. Consequently, some of the designed compositions evaluated in this work showed improved drying behavior and no explosion was observed even during the tests carried out under a high heating rate (20°C/min).
Although most of the studies presented in the literature are focused on MgAl 2 O 4 formation and its role on alumina-based refractories performance, ZnO has been reported as a promising spinel inducer. Aiming to investigate the influence of ZnAl 2 O 4 (ZA) and MgAl 2 O 4 (MA) generation on the properties of alumina-based castables, three vibratable compositions containing calcium aluminate cement or hydratable alumina as binders and 1 wt% of silica fume, were evaluated in this work. Flexural strength, apparent porosity, hot elastic modulus, corrosion cup-tests, thermodynamic simulations, were carried out to analyze the performance of such ceramics. The results indicated that ZnAl 2 O 4 was mainly formed above 800 °C, favoring an earlier sintering of the samples. Besides that, the softening of the castables was observed above 1200 °C, which resulted in the elastic modulus decay of the samples during their first heating cycle due to the formation of SiO 2 -rich liquid phase in the resulting microstructure. Cement-free samples obtained after calcination (600 °C for 5h) presented enhanced corrosion resistance when placed in contact with molten slag at 1500°C. Although, silica fume addition to the castables negatively affected their corrosion performance, it helped to counterbalance the expansion associated with the spinel and calcium aluminates formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.