The present paper deals with the inversion from experimental data provided by Institut Fresnel, France. The distorted-wave Born iterative approach is applied to the reconstruction of two lossless configurations involving dielectric circular cylinders. The dynamic range and the resolution of this scheme are governed by the operating frequency. For a low frequency, the dynamic range is large and the resolution is limited; raising the frequency improves the resolution at the cost of dynamic range. To obtain a high resolution for a large contrast, scattered-field information at multiple frequencies can be used. This is demonstrated for two cases where a direct inversion does not lead to convergence.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Abstract-The scattering from a large complex structure comprised of many objects may be efficiently tackled by embedding each object within a bounded domain (brick) which is described through a scattering operator. Upon electromagnetically combining the scattering operators we arrive at an equation which involves the total inverse scattering operator 1 of the structure: We call this procedure linear embedding via Green's operators (LEGO). To solve the relevant equation we then employ the eigencurrent expansion method (EEM)-essentially the method of moments with a set of basis and test functions that are approximations to the eigenfunctions of 1 (termed eigencurrents). We have investigated the convergence of the EEM applied to LEGO in cases when all the bricks are identical. Our findings lead us to formulate a simple and practical criterion for controlling the error of the computed solution a priori.Index Terms-Boundary integral equations, composite structures, domain decomposition method, eigencurrent expansion method, equivalence principle, method of moments (MoM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.