Fresh vegetables can be used as a source of antifungal lactic acid bacteria. Their exploitation as biopreservative will help in prolonging shelf-life of fresh vegetables.
BackgroundBotulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored.Methods and FindingsWe used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro.ConclusionsAn antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure.
Aims: To study the occurrence and diversity of Salmonella serovars in urban water supply systems of Nepal.
Methods and Results: Occurrence of Salmonella was detected in 42 out of 300 water samples by enrichment culture technique in selenite F broth followed by plating on Salmonella Shigella agar. A total of 54 isolates identified to genus level by standard tests were subsequently confirmed by serotyping, phage typing and PCR detection of virulence genes (inv A and spv C). The predominant serotype was Salmonella Typhimurium, followed by Salm. Typhi, Salm. Paratyphi A and Salmonella Enteritidis. Most of the Salm. Typhi isolates were E1 phage type followed by UVS4, A and UVS1. All isolates of Salm. Paratyphi A and Salm. Enteritidis were an untypable (UT) phage type. The majority of isolates were multi‐drug resistant as revealed by Kirby–Bauer disc diffusion technique. Ceftriaxone resistant isolates of Salm. Enteritidis indicated the presence of one of the ESBL genes, blaSHV, whereas the genes blaTEM and blaCTX were absent.
Conclusions: The microbiological quality of the urban water supply is poor and indicates possibility of fatal outbreaks of enteric fever and related infections in Nepal.
Significance and Impact of the Study: The present study will be useful in water borne disease control and prevention strategy formulation in Nepal and in the global context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.