In this paper, we report on the enhanced control of resistive switching in multilayer Si/SiO structures, which permit the formation of Si nanocrystals with a typical size of 5.88 nm and overall good shape homogeneity. The deposition of a different number of Si and SiO bilayers (6, 8 and 10) allowed control of SET/RESET voltages in negative bias ranges 4.5-10 V and 6.3-13 V for six- and ten-bilayer devices, respectively. The corresponding resistance ratio between ON/OFF states varied in the ranges 10-10 for the aforementioned number of bilayers. Based on the result of XPS measurements, we suggest that the resistive switching in the studied system occurs due to the formation and annihilation of Si-Si and Si-O bonds, which serve as conductive pathways and isolating material, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.