Purpose End‐to‐end testing with quality assurance (QA) phantoms for deformable dose accumulation and real‐time image‐guided radiotherapy (IGRT) has recently been recommended by American Association of Physicists in Medicine (AAPM) Task Groups 132 and 76. The goal of this work was to develop a deformable abdominal phantom containing a deformable three‐dimensional dosimeter that could provide robust testing of these systems. Methods The deformable abdominal phantom was fabricated from polyvinyl chloride plastisol and phantom motion was simulated with a programmable motion stage and plunger. A deformable normoxic polyacrylamide gel (nPAG) dosimeter was incorporated into the phantom apparatus to represent a liver tumor. Dosimeter data were acquired using magnetic resonance imaging (MRI). Static measurements were compared to planned dose distributions. Static and dynamic deformations were used to simulate inter‐ and intrafractional motion in the phantom and measurements were compared to baseline measurements. Results The statically irradiated dosimeters matched the planned dose distribution with an average γ pass rates of 97.0 ± 0.5% and 97.5 ± 0.2% for 3%/5 mm and 5%/5 mm criteria, respectively. Static deformations caused measured dose distribution shifts toward the phantom plunger. During the dynamic deformation experiment, the dosimeter that utilized beam gating showed an improvement in the γ pass rate compared to the dosimeter that did not. Conclusions A deformable abdominal phantom apparatus which incorporates a deformable nPAG dosimeter was developed to test real‐time IGRT systems and deformable dose accumulation algorithms. This apparatus was used to benchmark simple static irradiations in which it was found that measurements match well to the planned distributions. Deformable dose accumulation could be tested by directly measuring the shifts and blurring of the target dose due to interfractional organ deformation and motion. Dosimetric improvements were achieved from the motion management during intrafractional motion.
Purpose This work seeks to investigate new methods to determine the absorbed dose to water from kilovoltage x rays. Current methods are based on measurements in air and rely on correction factors in order to account for differences between the photon spectrum in air and at depth in phantom, between the photon spectra of the calibration beam and the beam of interest, or in the radiation absorption properties of air and water. This work aims to determine the absorbed dose to water in the NIST‐matched x‐ray beams at the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL). This will facilitate the use of detectors in terms of dose to water, which will allow for a simpler determination of dose to water in clinical kilovoltage x‐ray beams. Materials and methods A model of the moderately filtered x‐ray beams at the UWADCL was created using the BEAMnrc user code of the EGSnrc Monte Carlo code system. This model was validated against measurements and the dose to water per unit air kerma was calculated in a custom built water tank. Using this value and the highly precise measurement of the air kerma made by the UWADCL, the dose to water was determined in the water tank for the x‐ray beams of interest. The dose to water was also determined using the formalism defined in the report of AAPM Task Group 61 and using a method that makes use of a 60Co absorbed dose‐to‐water calibration coefficient and a beam quality correction factor to account for differences in beam quality between the 60Co calibration and kilovoltage x‐ray beam of interest. The dose to water values as determined by these different methods was then compared. Results The BEAMnrc models used in this work produced simulations of transverse and depth dose profiles that agreed with measurements with a 2%/2 mm criteria gamma test. The dose to water as determined from the different methods used here agreed within 3.5% at the surface of the water tank and agreed within 1.8% at a depth of 2 cm in phantom. The dose‐to‐water values all agreed within the associated uncertainties of the methods used in this work. Both the Monte Carlo‐based method and the 60Co‐based method had a lower uncertainty than the TG‐61 methodology for all of the x‐ray beams used in this work. Conclusion Two new dose determination methods were used to determine the dose to water in the NIST‐matched x‐ray beams at the UWADCL and they showed good agreement with previously established techniques. Due to the improved Monte Carlo calculation techniques used in this work, both of the methods have lower uncertainties compared to TG‐61. The methods presented in this work compare favorably with calorimetry‐based standards established at other institutions.
Purpose: Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. Methods: A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four 125 I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 µW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. Results: The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level.
OBJECTIVE: This project aims to provide a novel method for performing dosimetry measurements on TRT radionuclides using a custom-made SPECT/CT compatible phantom, common active and passive detectors, and Monte Carlo simulations. In this work we present a feasibility study using 99mTc for a novel approach to obtaining reproducible measurements of absorbed dose to water from radionuclide solutions using active and passive detectors in a custom phantom for the purpose of benchmarking Monte Carlo-based absorbed dose to water estimates. 
APPROACH: A cylindrical, acrylic SPECT/CT compatible phantom capable of housing an IBA EFD diode, SNC600c Farmer type ion chamber, and TLD-100 microcubes was designed and built for the purpose of assessing internal absorbed-dose-to-water at various points within a solution of 99mTc. The phantom is equipped with removable inserts that allow for numerous detector configurations and is designed to be used for verification of SPECT/CT-based absorbed-dose estimates with traceable detector measurements at multiple locations. Three experiments were conducted with exposure times ranging from 11 to 21 h with starting activities of approximately 10-16 GBq. Measurement data was compared to Monte Carlo simulations using the egs_chamber user code in EGSnrc 2019. 
MAIN RESULTS: In general, the ionization chamber measurements agreed with the Monte Carlo simulations within k=1 uncertainty values (±4% and ±7%, respectively). Measurements from the TLDs yielded results within k=1 agreement of the MC prediction (±6% and ±5%, respectively). Agreement within k=1 uncertainty (±6% and ±7%, respectively) was obtained for the diode for one of three conducted experiments. 
SIGNIFICANCE: While relatively large uncertainties remain, the agreement between measured and simulated doses provides proof of principal that dosimetry of radionuclide solutions with active detectors may be performed using this type of phantom with potential modifications for beta emitting radionuclides to be introduced in future work.
Purpose: The establishment of an air kerma rate standard at NIST for the Xoft Axxent® electronic brachytherapy source (Axxent® source) motivated the establishment of a modified TG‐43 dosimetry formalism. This work measures the modified dosimetry parameters for the Axxent® source in the absence of a treatment applicator for implementation in Xoft's treatment planning system. Methods: The dose‐rate conversion coefficient (DRCC), radial dose function (RDF) values, and polar anisotropy (PA) were measured using TLD‐100 microcubes with NIST‐calibrated sources. The DRCC and RDF measurements were performed in liquid water using an annulus of Virtual Water™ designed to align the TLDs at the height of the anode at fixed radii from the source. The PA was measured at several distances from the source in a PMMA phantom. MCNP‐determined absorbed dose energy dependence correction factors were used to convert from dose to TLD to dose to liquid water for the DRCC, RDF, and PA measurements. The intrinsic energy dependence correction factor from the work of Pike was used. The AKR was determined using a NIST‐calibrated HDR1000 Plus well‐type ionization chamber. Results: The DRCC was determined to be 8.6 (cGy/hr)/(µGy/min). The radial dose values were determined to be 1.00 (1cm), 0.60 (2cm), 0.42 (3cm), and 0.32 (4cm), with agreement ranging from (5.7% to 10.9%) from the work of Hiatt et al. 2015 and agreement from (2.8% to 6.8%) with internal MCNP simulations. Conclusion: This work presents a complete dataset of modified TG‐43 dosimetry parameters for the Axxent® source in the absence of an applicator. Prior to this study a DRCC had not been measured for the Axxent® source. This data will be used for calculating dose distributions for patients receiving treatment with the Axxent® source in Xoft's breast balloon and vaginal applicators, and for intraoperative radiotherapy. Sources and partial funding for this work were provided by Xoft Inc. (a subsidiary of iCAD). This work was also supported by the Radiological Sciences T32 Training Grant through the University of Wisconsin‐Madison Medical Physics department (5T32CA009206‐37).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.