Near-infrared reflectance spectra (1,100 to 2,498 nm) were collected on beef longissimus thoracis steaks for the purpose of establishing the feasibility of predicting meat tenderness by spectroscopy. Partial least squares (PLS) analysis (up to 20 factors) and multiple linear regression (MLR) were used to predict cooked longissimus Warner-Bratzler shear (WBS) force values from spectra of steaks from 119 beef carcasses. Modeling used the combination of log(1/R) and its second derivative. Overall, absorption was higher for extremely tough steaks than for tender steaks. This was particularly true at wavelengths between 1,100 and 1,350 nm. For PLS regression, optimal model conditions (R2 = .67; SEC = 1.2 kg) occurred with six PLS factors. When the PLS model was tested against the validation subset, similar performance was obtained (R2 = .63; SEP = 1.3 kg) and bias was small (<.3 kg). Among the 39 samples in the validation data set, 48.7, 87.7, and 97.4% of the samples were predicted within 1.0, 2.0, and 3.0 kg, respectively, of the observed Warner-Bratzler shear force value. The optimal PLS model was able to predict whether a steak would have a Warner-Bratzler shear force value < 6 kg with 75% accuracy. The R2 of MLR model was .67, and 89% of samples were correctly classified (< 6 vs > 6 kg) for Warner-Bratzler shear force. These data indicate that NIR is capable of predicting Warner-Bratzler shear force values of longissimus steaks. Refinement of this technique may allow nondestructive measurement of beef longissimus at the processing plant level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.