The Nash multiplicity sequence was defined by M. Lejeune-Jalabert as a non-increasing sequence of integers attached to a germ of a curve inside a germ of a hypersurface. M. Hickel generalized this notion and described a sequence of blow ups which allows us to compute it and study its behavior.In this paper, we show how this sequence can be used to compute some invariants that appear in algorithmic resolution of singularities. Moreover, this indicates that these invariants from constructive resolution are intrinsic to the variety since they can be read in terms of its space of arcs. This result is a first step connecting explicitly arc spaces and algorithmic resolution of singularities.
This paper is concerned with pose estimation and visual servoing from four points. We determine the configurations for which the corresponding Jacobian matrix becomes singular, leading to inaccurate and unstable results. Using an adequate representation and algebraic geometry, it is shown that, for any orientation between the camera and the object,
We study the robustness of the steady states of a class of systems of autonomous ordinary differential equations (ODEs), having as a central example those arising from (bio)chemical reaction networks. More precisely, we study under what conditions the steady states of the system are contained in a parallel translate of a coordinate hyperplane. To this end, we focus mainly on ODEs consisting of generalized polynomials and make use of algebraic and geometric tools to relate the local and global structure of the set of steady states. Specifically, we consider the local property termed zero sensitivity at a coordinate xi, which means that the tangent space is contained in a hyperplane of the form xi = c, and provide a criterion to identify it. We consider the global property termed absolute concentration robustness (ACR), meaning that all steady states are contained in a hyperplane of the form xi = c. We clarify and formalize the relation between the two approaches. In particular, we show that ACR implies zero sensitivity and identify when the two properties do not agree, via an intermediate property we term local ACR. For families of systems arising from modeling biochemical reaction networks, we obtain the first practical and automated criterion to decide upon (local) ACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.