Photoreflectance ͑PR͒ and contactless electroreflectance ͑CER͒ spectroscopies have been applied to study optical transitions in undoped and Si-doped AlGaN / GaN heterostructures at room temperature. Spectral features related to excitonic and band-to-band absorptions in GaN layer and band-to-band absorption in AlGaN layer have been resolved and analyzed. In addition, a broad spectral feature related to two-dimensional electron gas has been observed for the Si-doped heterostructure. It has been found that some of the mentioned optical transitions are not observed in CER spectra whereas they are very strong in PR spectra. This phenomenon is associated with different mechanisms of the modulation of built-in electric field in the investigated structure. A combination of PR and CER gives the possibility of a richer interpretation of both PR and CER spectra.
The structure, morphology and optical properties of GaN films deposited by metalorganic vapour phase epitaxy (MOVPE) on alternative substrates: ZnO, NdGaO, YSZ (yttria stabilized zirconia). Scanning electron microscopy, X‐ray diffraction and photoluminescence were used for the epitaxial layers characterisation. The obtained results have been compared to those of GaN layers grown on c‐plane sapphire substrates. It was established that the most important step towards the realisation of device quality GaN material on alternative substrates is the first stage of the growth process.
In this work we present the influence of in situ deposited non-continous SiN layer and the chemical precursors III/V mole ratio change during GaN buffer growth for AlGaN/GaN/Si(111) heterostructures with low temperature AlN interlayer on their crystalline quality and electrical mobility of two dimensional electron gas (2DEG). We show, that application of SiN layer resulted in a decrease of (0002) full width at half maximum of diffraction peak below 400 arcsec and build-in stress in 2 µm thick heterostructures below 200 MPa without any relaxation visible on the surface. In optimized AlGaN/GaN heterostructures, by altering V/III mole ratio during growth of GaN subbuffer, the maximum 2DEG mobility of 2057 cm 2 V −1 s −1 , measured by impedance spectroscopy method, was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.