In 26 hospitalized patients with depression, a combined pharmacogenetic test with dextromethorphan, a substrate of cytochrome P450IID6, and mephenytoin, the S-form of which is hydroxylated by a P450IIC isozyme, was carried out before amitriptyline therapy. Metabolites were determined in 24-hour urine samples collected on treatment day 8, and the contributions of individual compounds, including the four isomers of 10-hydroxyamitriptyline and 10-hydroxynortriptyline to total excretion were calculated. Formation of (-)-E-10-hydroxyamitriptyline and (-)-E-10-hydroxynortriptyline apparently depends on the activity of cytochrome P450IID6 because negative correlations existed between the log metabolic ratio of dextromethorphan and the relative quantities of these enantiomers. In contrast, correlations were positive for nortriptyline, (+)-E-10-hydroxynortriptyline, (-)-Z-10-hydroxynortriptyline, and (+)-Z-10-hydroxynortriptyline. The mephenytoin hydroxylase seems to participate in side-chain demethylation to the secondary and primary amines, because the log metabolic ratio of mephenytoin correlated negatively with the relative quantity of E-10-hydroxydidesmethylamitriptyline and positively with that of amitriptyline and its N-glucuronide.
1. Four volunteers phenotyped as extensive metabolizers of sparteine took 25 mg nortriptyline hydrochloride and collected urine for 72-80 h. Total free and conjugated 10-hydroxynortriptyline (10-OH-NT) accounted for 54-58% of the dose and it was reduced to 25-40% when 50 mg quinidine sulphate was ingested on the first and second day. 2. Of the four isomers of 10-OH-NT, (-)-E-10-OH-NT was selectively decreased in quantity by quinidine coadministration, while the (+)-isomer and (-)- and (+)-Z-10-OH-NT were found in unchanged or slightly increased quantities. The contribution of (-)-E-10-OH-NT to total E-10-OH-NT and the E-/Z-ratio in total 10-OH-NT were significantly reduced. 3. The quantity of the phenol, 2-hydroxynortriptyline in urine was decreased by quinidine; the relative amounts of metabolites with a primary amino group were not affected. 4. Liver microsomes from a donor in which cytochrome P450IID6 was shown to be present by in vitro phenotyping metabolized NT to E-10-OH-NT containing 86% of the (-)-isomer. Quinidine reduced the hydroxylation rate in (-)-E-10-position much more than that in (+)-E-10-position. 5. Since quinidine selectively impairs the function of cytochrome P450IID6, it is concluded that this isoform catalyses NT hydroxylation predominantly in (-)-E-10- and in 2-position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.