A recently introduced tool for the analysis of turbulence, wavelet bicoherence [B. Ph. van Milligen, C. Hidalgo and E. Sánchez, Phys. Rev. Lett. 16 (1995) 395], is investigated. It is capable of detecting phase coupling-nonlinear interactions of the lowest (quadratic) orderwith time resolution. To demonstrate its potential, it is applied to numerical models of chaos and turbulence and to real measurements. It detected the coupling interaction between two coupled van der Pol oscillators. When applied to a model of drift wave turbulence relevant to plasma physics, it detected a highly localized coherent structure. Analyzing reflectometry measurements made in fusion plasmas, it detected temporal intermittency and a strong increase in nonlinear phase coupling coinciding with the L/H (Low-to-High confinement mode) transition.
Demonstrating improved confinement of energetic ions is one of the key goals of the Wendelstein 7-X (W7-X) stellarator. In the past campaigns, measuring confined fast ions has proven to be challenging. Future deuterium campaigns would open up the option of using fusion-produced neutrons to indirectly observe confined fast ions. There are two neutron populations: 2.45 MeV neutrons from thermonuclear and beam-target fusion, and 14.1 MeV neutrons from DT reactions between tritium fusion products and bulk deuterium. The 14.1 MeV neutron signal can be measured using a scintillating fiber neutron detector, whereas the overall neutron rate is monitored by common radiation safety detectors, for instance fission chambers. The fusion rates are dependent on the slowing-down distribution of the deuterium and tritium ions, which in turn depend on the magnetic configuration via fast ion orbits. In this work, we investigate the effect of magnetic configuration on neutron production rates in W7-X. The neutral beam injection, beam and triton slowing-down distributions, and the fusion reactivity are simulated with the ASCOT suite of codes. The results indicate that the magnetic configuration has only a small effect on the production of 2.45 MeV neutrons from DD fusion and, particularly, on the 14.1 MeV neutron production rates. Despite triton losses of up to 50 %, the amount of 14.1 MeV neutrons produced might be sufficient for a time-resolved detection using a scintillating fiber detector, although only in high-performance discharges.
Sheared flows have been experimentally studied in TJ-II plasmas. In lowdensity ECH plasmas, sheared flows can be easily controlled by changing the plasma density, thereby allowing the radial origin and evolution of the edge velocity shear layer to be studied. In high density NBI heated plasmas a negative radial electric field is observed that is dominated by the diamagnetic component. The shear of the negative radial electric field increases at the L-H transition by an amount that depends on the magnetic configuration and heating power. Magnetic configurations with and without a low order rational surface close to the plasma edge show differences that may be interpreted in terms of local changes in the radial electric field induced by the rational surface that could facilitate the L-H transition. Fluctuation measurements show a reduction in the turbulence level that is strongest at the position of maximum E r shear. High temporal and spatial resolution measurements indicate that turbulence reduction precedes the increase in the mean sheared flow, but is simultaneous with the increase in the low frequency oscillating sheared flow. These observations may be interpreted in terms of turbulence suppression by oscillating flows, the so-called zonal flows.
Fluctuation-induced fluxes have a bursty character. As a consequence, a significant part of the total particle flux is carried out by sporadic, large transport bursts. The local flux distribution function is consistent with a near-Gaussian character of the fluctuations. The radial dependence of the statistical properties of plasma fluctuations and induced fluxes have been investigated in the plasma boundary region of the TJ-I tokamak ͓I. García-Cortés et al., Phys. Fluids B 4, 4007 ͑1992͔͒ and the TJ-IU torsatron ͓E.
We show that the modulational instability growth rate of zonal flows is determined directly from the quasilinear wave kinetic equation. We also demonstrate the relation between zonal-flow growth and the cross bispectrum of the high-frequency drift-wave-driven Reynolds stress and the low-frequency plasma potential by explicit calculation. Experimental measurements of the spatiotemporal evolution of the spectrum integrated bicoherence at the L-->H transition near the edge shear layer indicate a modification in the nonlinear phase coupling, which might be linked to the generation of sheared ExB flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.