Reciprocating lubricated contacts sometimes suffer from oil starvation due to cavitation at the reversal of motion. However, the behavior of cavities is not well understood such that starvation can be theoretically predicted. In this study, the length of cavity in a steady state elastohydrodynamic lubricated point contact was calculated. For numerical simulation, a modified Elrod algorithm was used. An equation was obtained for the cavity enclosed in the oil meniscus. The equation was constructed with Moes dimensionless parameters M and L, assumed pressure of cavity, and viscosity pressure index of the lubricant. The dimensionless cavity length (or the ratio of cavity length by Hertzian contact radius) is proportional to the product of M−a and Lb. Careful examination of the equation elucidated that the cavity length is dominated by the viscosity, sum velocity, cavity pressure, and geometry of the contact. Experimental measurements with a ball-on-disk apparatus have shown good agreement. The validity of the equation suggests that the algorithm is applicable for complete transient simulations. In practice, the estimated cavity length can be a parameter for starvation.
The cam-follower contact is one of the most complex lubricated non-conformal contact due to its continuous variation of load, speed and geometry. Investigations on new design quantities such as geometry, materials and coatings are important for a reduction of friction losses and wear problems. The complexity of the phenomena occurring in the camshaft systems make experimental verifications very important. In this work, an already existing versatile experimental apparatus for investigation of nonconformal lubricated contacts, able to measure film thickness using the optical interference method and friction force trough a load cell, has been modified in order to tests cam-follower contacts. Some test have been carried out for investigating the behaviour of some fundamental components of the rig. A theoretical/numerical simulations has been performed to investigate the dynamic behaviour of the system and in order to provide important indications for the interpretation of the experimental results. The programme has been also an important support for the design and of a new apparatus specifically addressed to the cam-follower contact and with increased potentialities capable of more detailed measurement of film thickness and contact forces. The apparatus is able to reproduce a cam-follower mechanism that uses a rocker as a link device between the cam follower set and the valve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.