As part of a European LIFE ArtWET project, two on‐site buffer zones, an artificial wetland and a forest plot, are being evaluated for their capacity to mitigate pesticide pollution. As treatment efficiency is highly dependent on the systems' hydrology, the present work focuses on the watershed and both systems' hydrological functioning. The design strategy involved limited inlet flow rates to 70 L s−1: 99% of watershed outlet flow rates were lower than this limit. Approximately half of the flows of greatest concern passed through the artificial wetland, whereas the forest only received 2% of these flows. A tracer experiment was conducted under a low steady flow rate while little vegetation was present in the artificial wetland. A water dye tracer (sulforhodamine B, SB) and two molecules of contrasting properties, uranine (Ur, photodegrading) and isoproturon (mobile and only slightly sorptive, IPU) were injected. Dilution, sorption, and photodegradation were observed. The forest plot, which presented a high organic matter content, showed more sorption (IPU, SB) but lower photodecay (Ur) than did the artificial wetland. Total IPU losses in the forest buffer were high (79%). In the artificial wetland, 30% IPU losses were found, whereas a 66.5‐h mean retention time was determined and good hydraulic efficiency (0.55) was calculated. Few dead zones and short‐circuits were found, suggesting good hydrological functioning. Implementing buffer zones in subsurface pipe‐drained watersheds actively participates in the reduction of pesticide transfer to natural water bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.