It is shown from studies of synthetic kaolinites doped with Fe 3+ that the ESR spectrum of kaolinite at g = 4 consists of two components attributed to Fe 3+ ions occupying two distinct substitutional sites (Centres I and II). The relative intensity of the two components can be correlated with the X-ray crystallinity of the samples. The ESR spectrum is influenced by artificial changes in crystallinity produced by subjecting samples to high stresses or by intercalation. It is concluded that Centre II is due to Fe 3 + replacing A13 + in the octahedral layer in a region of high crystallinity. Centre I is assigned to Fe 3 § occupying A13 § sites distorted by changes in the hydroxyl orientations asso=iated with layer stacking disorder or disruption of interlayer bonding.A stable defect centre in kaolinite which produces an ESR spectrum at g = 2"0 is attributed to either a hole centre located on an Si--O bond adjacent to an Mg 2+ octahedral impurity or to an 0 2 ion trapped within the lattice.
The different types of iron oxide phases associated with the surfaces of two suites of kaolins from Georgia, U.S.A., and from the Southwest Peninsula of England, have been identified using electron spin resonance (ESR) spectroscopy combined with magnetic-filtration, thermal, and chemical treatments. It has been shown that the English kaolins are coated with a lepidocrocitelike phase, which is readily removed by de Endredy's method of deferrification, while the Georgia kaolins are coated with a hematite-or goethitelike phase, which is not removed by this treatment. Throughout the course of this study, the effects of the various physical and chemical treatments on the brightness values of the kaolins were examined.
Synthetic kaolinites of varying crystallinity, and in some instances with ideal morphology, have been produced by hydrothermal reaction of aluminiosilicate gels. Synthetic kaolinites doped with Mg2+ and Fe3+ were also obtained.Synthetic kaolinite doped with Fe3+ produced an ESR spectrum at g = 4 identical to spectra observed in natural kaolinites. Following X-irradiation and annealing at ~200°C, synthetic kaolinite doped with Mg2+ exhibited an ESR signal at g = 2·0 identical to a resonance observed in natural kaolinites. It is concluded that the g = 2·0 signal in kaolinite is due to a defect centre stabilized by Mg2+ substitution.All synthetic and natural kaolinites exhibit an additional resonance at g = 2·0 following X-irradiation which can be repeatedly created and destroyed by irradiation and annealing. This resonance is attributed to defects possibly associated either with the substitution of Al3+ for Si4+ in kaolinite or with lattice vacancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.