Most existing, expert monitoring systems do not provide the real time continuous analysis of the monitored physiological data that is necessary to detect transient or combined vital sign indicators nor do they provide long term storage of the data for retrospective analyses. In this paper we examine the feasibility of implementing a long term data storage system which has the ability to incorporate real-time data analytics, the system design, report the main technical issues encountered, the solutions implemented and the statistics of the data recorded. McLaren Electronic Systems expertise used to continually monitor and analyse the data from F1 racing cars in real time was utilised to implement a similar real-time data recording platform system adapted with real time analytics to suit the requirements of the intensive care environment. We encountered many technical (hardware and software) implementation challenges. However there were many advantages of the system once it was operational. They include: (1) The ability to store the data for long periods of time enabling access to historical physiological data. (2) The ability to alter the time axis to contract or expand periods of interest. (3) The ability to store and review ECG morphology retrospectively. (4) Detailed post event (cardiac/respiratory arrest or other clinically significant deteriorations in patients) data can be reviewed clinically as opposed to trend data providing valuable clinical insight. Informed mortality and morbidity reviews can be conducted. (5) Storage of waveform data capture to use for algorithm development for adaptive early warning systems. Recording data from bed-side monitors in intensive care/wards is feasible. It is possible to set up real time data recording and long term storage systems. These systems in future can be improved with additional patient specific metrics which predict the status of a patient thus paving the way for real time predictive monitoring.
Studies on the influence of a modern lifestyle in abetting Coronary Heart Diseases (CHD) have mostly focused on deterrent health factors, likesmoking, alcohol intake, cheese consumption and average systolic blood pressure, largely disregarding the impact of a healthy lifestyle in mitigating CHD risk. In this study, 30+ years' World Health Organization (WHO) data have been analyzed, using a wide array of advanced Machine Learning techniques, to quantify how regulated reliance on positive health indicators, e.g. fruits/vegetables, cereals can offset CHD risk factors over a period of time. Our research ranks the impact of the negative outliers on CHD and then quantifies the impact of the positive health factors in mitigating the negative risk-factors. Our research outcomes, presented through simple mathematical equations, outline the best CHD prevention strategy using lifestyle control only. We show that a 20% increase in the intake of fruit/vegetable leads to 3-6% decrease in SBP; or, a 10% increase in cereal intake lowers SBP by 3%; a simultaneous increase of 10% in fruit-vegetable can further offset the effects of SBP by 6%. Our analysis establishes gender independence of lifestyle on CHD, refuting long held assumptions and unqualified beliefs. We show that CHD risk can be lowered with incremental changes in lifestyle and diet, e.g. fruit-vegetable intake ameliorating effects of alcohol-smoking-fatty food. Our multivariate data model also estimates functional relationships amongst lifestyle factors that can potentially redefine the diagnostics of Framingham score-based CHD-prediction.Globally, cardiovascular diseases account for nearly 17.9 million deaths with Coronary Heart Disease (CHD) accounting for 80% of these 1 . A myriad of factors have been identified as risk generators, including ethnicity, sex, total cholesterol level, triglycerides, blood pressure, that in turn are affected by life style denominators 2,3 . Together, they determine the risk appraisal function that have been assessed using conventional predictive scoring like body mass index (BMI) and Framingham scores 4,5 together with more advanced population biology or epidemiological estimators. Although there have been numerous advances in the treatment of established CHD, at a population level, assessed through Artificial Intelligence (Machine Learning) based adaptation of established statistical wisdom, remains a major knowledge gap 5 .Ground breaking epidemiological studies have identified key lifestyle and health indicators as risk factors for Coronary Heart Disease (CHD) 6-9 . Lifestyle factors include smoking 10,11 , alcohol consumption 12 , lack of physical activity while key health indicators include obesity, high blood pressure 5 and diabetes 13 . Evidence suggests a diet rich in fruits, vegetables and whole grains can mitigate the onset of CHD 8 . Some of these risk factors are not individually causative but when combined with other risk factors, increase the risk of CHD 10-14 . Further, lifestyle factors can be suitably modified to ameli...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.