This paper considers nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator. These plasma oscillations are described by a nonlinear differential equation of the form ẍ + ͑1+x 2 ͒ẋ + x + x 2 + ␦x 3 = F cos ⍀t. The amplitudes of the forced harmonic, superharmonic, and subharmonic oscillatory states are obtained using the harmonic balance technique and the multiple time scales method. Admissible values of the amplitude of the external strength are derived. Bifurcation sequences displayed by the model for each type of oscillatory states are performed numerically through the fourth-order Runge-Kutta scheme.
This paper deals with the dynamics and active control of a driven multi-limit-cycle Van der Pol oscillator. The amplitude of the oscillatory states both in the autonomous and nonautonomous case are derived. The interaction between the amplitudes of the external excitation and the limit-cycles are also analyzed. The domain of the admissible values on the amplitude for the external excitation is found. The effects of the control parameter on the behavior of a driven multi-limit-cycle Van der Pol model are analyzed and it appears that with the appropriate selection of the coupling parameter, the quenching of chaotic vibrations takes place.
We investigate the dynamics of a driven Van der Pol-Duffing oscillator circuit and show the existence of higher-dimensional chaotic orbits (or hyperchaos), transient chaos, strange-nonchaotic attractors, as well as quasiperiodic orbits born from Hopf bifurcating orbits. By computing all the Lyapunov exponent spectra, scanning a wide range of the driving frequency and driving amplitude parameter space, we explore in twoparameter space the regimes of different dynamical behaviours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.