In the high-latitude regions of Earth, aurorae are the often-spectacular visual manifestation of the interaction between electrically charged particles (electrons, protons or ions) with the neutral upper atmosphere, as they precipitate along magnetic field lines. More generally, auroral emissions in planetary atmospheres "are those that result from the impact of particles other than photoelectrons" (ref. 1). Auroral activity has been found on all four giant planets possessing a magnetic field (Jupiter, Saturn, Uranus and Neptune), as well as on Venus, which has no magnetic field. On the nightside of Venus, atomic O emissions at 130.4 nm and 135.6 nm appear in bright patches of varying sizes and intensities, which are believed to be produced by electrons with energy <300 eV (ref. 7). Here we report the discovery of an aurora in the martian atmosphere, using the ultraviolet spectrometer SPICAM on board Mars Express. It corresponds to a distinct type of aurora not seen before in the Solar System: it is unlike aurorae at Earth and the giant planets, which lie at the foot of the intrinsic magnetic field lines near the magnetic poles, and unlike venusian auroras, which are diffuse, sometimes spreading over the entire disk. Instead, the martian aurora is a highly concentrated and localized emission controlled by magnetic field anomalies in the martian crust.
Results from the occultation of the sun by Neptune imply a temperature of 750 +/- 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman alpha (340 +/- 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Triton's atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Triton's upper atmosphere is 95 +/- 5 kelvins, and the surface pressure is roughly 14 microbars.
Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S III, S IV, and O III indicating an electron temperature of 10(5) K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman alpha by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (>/= 1000 K) wvith a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.