Renal cell carcinoma represents a model for contemporary classification of solid tumors; however, unusual and unclassifiable cases exist and are not rare in children and young adults. The anaplastic lymphoma kinase (ALK) gene has recently been implicated in subsets of pulmonary, esophageal, breast, and colon cancers. These findings strengthen the importance of molecular classification of carcinomas across different organ sites, especially considering the evolving targeted anticancer therapies with ALK inhibitors. In the current study of six pediatric renal cell carcinomas, two cases exhibited structural karyotypic abnormalities involving the ALK locus on chromosomal band 2p23. Fluorescence in situ hybridization (FISH) studies were positive for an ALK rearrangement in one case, and subsequent 5 0 rapid amplification of cDNA ends analysis of this tumor revealed that the 3 0 portion of the ALK transcript encoding for the kinase domain was fused in frame to the 5 Keywords: ALK; FISH; fusion gene; renal cell carcinoma; translocation; VCL Renal cell carcinoma has an incidence of 209 000 cases per year and is responsible for 102 000 deaths worldwide annually. 1,2 Approximately 80% of all renal carcinoma cases are currently classified as clear cell, papillary, or chromophobe subtypes with discrete molecular abnormalities characteristic for each group. 2-7 Rare subtypes have also been defined by the 2004 World Health Organization classification and include collecting duct, multilocular cystic, mucinous tubular and spindle cell, medullary, and Xp11.2 translocation-and neuroblastoma-associated carcinomas; each of these subtypes constitutes B1% of all primary kidney epithelial tumors and the three latter subtypes are diagnosed predominantly in children. 8,9 Additional
Ethanol alters BK (slo1) channel function leading to perturbation of physiology and behavior. Site(s) and mechanism(s) of ethanol-BK channel interaction are unknown. We demonstrate that ethanol docks onto a water-accessible site that is strategically positioned between the slo1 calcium-sensors and gate. Ethanol only accesses this site in presence of calcium, the BK channel's physiological agonist. Within the site, ethanol hydrogen-bonds with K361. Moreover, substitutions that hamper hydrogen bond formation or prevent ethanol from accessing K361 abolish alcohol action without altering basal channel function. Alcohol interacting site dimensions are approximately 10.7 × 8.6 × 7.1 Å, accommodating effective (ethanol-heptanol) but not ineffective (octanol, nonanol) channel activators. This study presents: (i) to our knowledge, the first identification and characterization of an n-alkanol recognition site in a member of the voltage-gated TM6 channel superfamily; (ii) structural insights on ethanol allosteric interactions with ligand-gated ion channels; and (iii) a first step for designing agents that antagonize BK channel-mediated alcohol actions without perturbing basal channel function.is a psychoactive agent that has been overwhelmingly consumed by mankind across cultures and civilizations. Alcohol actions on central nervous system (CNS) physiology and behavior are largely independent of beverage type but due to ethanol itself (1). Ethanol alters cell excitability by modifying function of transmembrane (TM) ion channel proteins, including K + channels. These channels constitute the most heterogeneous and extensive group of ion channels, its members belonging to TM2, TM4, and TM6 protein superfamilies. Within this myriad of proteins, several K + channels have been shown to modify behavior in response to acute exposure to ethanol concentrations that reach the CNS and other excitable tissues during alcohol drinking (2-5). However, with the sole exception of the TM2, G protein-regulated inward rectifier K + (GIRK) channel (6), there is no structural information on ethanol-K + channel protein interacting sites currently available. Voltage/Ca 2+ -gated, large conductance K + channels (BK), which are members of the TM6 voltage-gated ion channel superfamily, constitute major mediators of alcohol actions in excitable tissues. Acute exposure to ethanol levels reached in CNS during alcohol intoxication alters BK-mediated currents and thus, elicits widespread and profound modifications in physiology and behavior. In rodent models, acute ethanol exposure leads to reduced vasopressin, oxytocin and growth hormone release with consequent perturbation in physiology and behavior (7), altered firing rates in nucleus accumbens (8) and dorsal root ganglia neurons (9), and alcohol-induced cerebral artery constriction (10, 11). Moreover, studies in both mammals and invertebrate models demonstrate that ethanol targeting of neuronal BK is involved in development of alcohol tolerance and dependence (12-16). Although the physiological and be...
Rats were subjected to bilateral carotid artery occlusion for 30 min, followed by reperfusion for varying time periods. The concentration of reduced and oxidized glutathione, glutathione peroxidase and glutathione reductase were determined in whole brain after varying periods of reperfusion. Lipid peroxidation was also assessed by determining the levels of malondialdehyde (MDA) in the brain. Reperfusion for 1 hr following bilateral carotid artery occlusion resulted in significant decrease in total glutathione (GSH) concentration along with small but significant increase in oxidized glutathione (GSSG) levels. After 4 hr of reperfusion, GSH levels recovered, although GSSG levels remained elevated up to 12 hr of reperfusion. Increase in malondialdehyde levels was also detected in the brain up to 12 hr of reperfusion. Glutathione reductase activity remained significantly low up to 144 hr of reperfusion, while glutathione peroxidase activity remained unaffected. These results demonstrate that oxidative stress is generated in the brain during reperfusion following partial ischemia due to bilateral carotid artery occlusion.
Cellular morphology of small cell osteosarcoma, an aggressive variant of osteosarcoma, is similar to Ewing sarcoma, but its molecular pathogenesis is largely unknown. We report the case of a 12-year-old girl with multifocal small cell osteosarcoma positive for the Ewing sarcoma breakpoint region 1 (EWSR1) gene rearrangement by interphase fluorescent in situ hybridization and negative for EWSR1-FLI1, EWSR1-ERG, and EWSR1-WT1 fusion transcripts by reverse transcriptase PCR. Rapid amplification of cDNA ends revealed exon 6 of the cAMP-responsive element binding protein 3-like 1 gene (CREB3L1, also known as "OASIS," NM_52854.2) fused in-frame to the EWSR1 exon 11, consistent with the EWSR1-CREB3L1 fusion transcript expressed in tumor tissue. The corresponding chimeric gene was confirmed by amplification and subsequent sequencing of the genomic breakpoint between introns 11 and 5 of EWSR1 and CREB3L1, respectively. An ∼70 kDa product in the tumor tissue lysate reacted with the CREB3L1 carboxyterminal antibody, consistent with a 656-amino acid predicted chimeric protein. Immunohistochemistry with the same antibody showed signal translocation from the physiologic perinuclear compartment observed in glia and unrelated osteoblasts to nuclei of tumor cells, consistent with the likely function of EWSR1-CREB3L1 as a transcriptional regulator predicted by its structure. This is the first report of a fusion transcript in osteogenic sarcoma; it demonstrates a relation between molecular mechanisms of small cell osteogenic and Ewing sarcomas. The 3'-end partner and the inferred structure of EWSR1-CREB3L1, however, are different from those of Ewing sarcoma, suggesting different targets of the new oncogene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.