TiO 2 nanoparticles doped with different concentrations of cobalt (4, 8, 12 and 16 %) were synthesized by sol-gel method at room temperature with appropriate reactants. In general, TiO 2 can exist in anatase, rutile, and brookite phases. In this present study, we used titanium tetra iso propoxide and 2-propanol as a common starting materials and the obtained products were calcined at 500°C and 800°C to get anatase and rutile phases, respectively. The crystalline sizes of the doped and undoped TiO 2 nanoparticles were observed with X-ray diffraction (XRD) analysis. The functional groups of the samples were identified by Fourier transform infrared spectroscopy (FTIR). From UV-VIS diffuse reflectance spectra (DRS), the band gap energy and excitation wavelength of doped and undoped TiO 2 nanoparticles were identified. The defect oriented emissions were seen from photoluminescence (PL) study. The spherical uniform size distribution of particles and elements present in the samples was determined using two different techniques viz., scanning electron microscopy (SEM) with energy-dispersive spectrometer (EDX) and transmission electron microscope (TEM) with selected area electron diffraction (SAED) pattern. The second harmonic generation (SHG) efficiency was also found and the obtained result was compared with potassium di hydrogen phosphate (KDP).
Studies have been planned to obtain activity and associated radiation hazards in ceramic raw materials (quartz, feldspar, clay, zircon, kaolin, grog, alumina bauxite, baddeleyite, masse, dolomite and red mud) and end products (ceramic brick, glazed ceramic wall and floor tiles) as the activity concentrations of uranium, thorium and potassium vary from material to material. The primordial radionuclides in ceramic raw materials and end products are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the activity level in these materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the activity concentration of (226)Ra, (232)Th and (40)K in ceramic raw materials and end products. The activity of these materials has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyser (MCA). Radium equivalent activity, alpha-gamma indices and radiation hazard indices associated with the natural radionuclides are calculated to assess the radiological aspects of the use of the ceramic end products as decorative or covering materials in construction sector. Results obtained were examined in the light of the relevant international legislation and guidance and compared with the results of similar studies reported in different countries. The results suggest that the use of ceramic end product samples examined in the construction of dwellings, workplace and industrial buildings is unlikely to give rise to any significant radiation exposure to the occupants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.