Rapid production of high quality components is the key to cost reduction industrial applications.The present work is the first attempt of manufacturing syntactic foams, hollow particle filled lightweight composites, using an industrial scale injection molding machine. High density polyethylene (HDPE) is used as the matrix material and fly ash cenospheres are used as the filler. Development of syntactic foams with cenospheres serves dual purpose of beneficial utilization of industrial waste fly ash and reduction in the cost of the component. The pressure and temperature used in injection molding process are optimized to minimize fracture of cenospheres and obtain complete mixing of cenospheres with HDPE. The optimized parameters are used for manufacturing syntactic foams with 20, 40 and 60 wt.% cenospheres. With increasing cenosphere content, density and strength reduce and modulus increases. Surface modification of constituents results in rise in strength with increasing filler content. A theoretical model based on a differential scheme is used to estimate the properties of cenospheres by conducting parametric studies because of inherent difficulties in direct measurement of cenosphere properties. The potential for using the optimized injection molding process is demonstrated by casting several industrial components.
The influence of cenosphere surface treatment and blending method on the properties of injection molded high-density polyethylene (HDPE) matrix syntactic foams is investigated. Cenospheres are treated with silane and HDPE is functionalized with dibutyl maleate. Tensile test specimens are cast with 20, 40, and 60 wt % of cenospheres using injection molding. Modulus and strength are found to increase with increasing cenosphere content for composites with treated constituents. Highest modulus and strength were observed for 40 and 60 wt % untreated mechanically mixed and treated brabender mixed cenospheres/HDPE blends, respectively. These values are 37 and 17% higher than those for virgin and functionalized HDPE. Theoretical models are used to assess the effect of particle properties and interfacial bonding on modulus and strength of syntactic foams. Brabender mixing method provided highest ultimate tensile and fracture strengths, which is attributed to the effectiveness of Brabender in breaking particle clusters and generating the higher particle-matrix surface area compared to that by mechanical mixing method. Theoretical trends show clear benefits of improved particle-matrix interfacial bonding in the strength results. V C 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43881.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.