We propose and validate two end-to-end deep learning architectures to learn foot pressure distribution maps (dynamics) from 2D or 3D human pose (kinematics). The networks are trained using 1.36 million synchronized pose+pressure data pairs from 10 subjects performing multiple takes of a 5-minute long choreographed Taiji sequence. Using leave-one-subject-out cross validation, we demonstrate reliable and repeatable foot pressure prediction, setting the first baseline for solving a non-obvious pose to pressure cross-modality mapping problem in computer vision. Furthermore, we compute and quantitatively validate Center of Pressure (CoP) and Base of Support (BoS), two key components for stability analysis, from the predicted foot pressure distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.