Because of the importance of the analytical study of the vibration behavior of nanotubes delivering nanoparticles, in this study, the transverse vibration of these systems has been studied by analytical approach based on the homotopy perturbation method. The nonlocal Euler–Bernoulli beam theory is used for derivation of the equation of motion. The interaction between nanoparticle and the inner wall of nanotube has been modeled by using van der Waals forces and considering the effects of inertial forces caused by centrifugal and Coriolis acceleration components of nanoparticles. After evaluation of the implemented analytical method by numerical results, it is revealed that the obtained second-order approximation response gives high accurate vibration behavior of these systems for a wide range of parameters. As well, these results show that inertial forces caused by motion of nanoparticle increase vibration amplitude of nanotube and change nonlinear frequency of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.