The paper experimentally studies the effects of periodic unsteady wake flow on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. The experiments were carried out at a Reynolds number of 110,000 (based on suction surface length and exit velocity) with a free-stream turbulence intensity of 1.9%. One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies cover the entire operating range of LP turbines. In addition to the unsteady boundary layer measurements, blade surface measurements were performed at the same Reynolds number. The surface pressure measurements were also carried out at one steady and two periodic unsteady inlet flow conditions. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations and the heights defining the separation bubble were determined by carefully analyzing and examining the pressure and the mean velocity profile data. The location of boundary layer separation was independent of the reduced frequency level. However, the extent of the separation was strongly dependent on the reduced frequency level. Once the unsteady wake started to penetrate into the separation bubble, the turbulent spot produced in the wake paths caused a reduction of the separation bubble height.
The paper experimentally studies the effects of periodic unsteady wake flow on boundary layer development, separation and reattachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. The experiments were carried out at a Reynolds number of 110,000 (based on suction surface length and exit velocity) with a free-stream turbulence intensity of 1.9%. One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies cover the entire operating range of LP turbines. In addition to the unsteady boundary layer measurements, blade surface measurements were performed at the same Reynolds number. The surface pressure measurements were also carried out at one steady and two periodic unsteady inlet flow conditions. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations and the heights defining the separation bubble were determined by carefully analyzing and examining the pressure and the mean velocity profile data. The location of boundary layer separation was independent of the reduced frequency level. However, the extent of the separation was strongly dependent on the reduced frequency level. Once the unsteady wake started to penetrate into the separation bubble, the turbulent spot produced in the wake paths caused a reduction of the separation bubble height.
The paper experimentally and theoretically studies the effects of periodic unsteady wake flow and aerodynamic characteristics on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experiments were carried out at Reynolds number of 110,000 (based on suction surface length and exit velocity). For one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, intermittency behavior were experimentally and theoretically investigated. The current investigation attempts to extend the intermittency unsteady boundary layer transition model developed in previously to the LPT cases, where separation occurs on the suction surface at a low Reynolds number.The results of the unsteady boundary layer measurements and the intermittency analysis were presented in the ensemble-averaged, and contour plot forms. The analysis of the boundary layer experimental data with the flow separation, confirms the universal character of the relative intermittency function which is described by a Gausssian function. NOMENCLATURE
The paper experimentally investigates the individual and combined effects of periodic unsteady wake flows and freestream turbulence intensity (FSTI) on flow separation along the suction surface of a low pressure turbine blade. The experiments were carried out at a Reynolds number of 110,000 based on the suction surface length and the cascade exit velocity. The experimental matrix includes freestream turbulence intensities of 1.9%, 3.0%, 8.0%, 13.0% and three different unsteady wake frequencies with the steady inlet flow as the reference configuration. Detailed boundary layer measurements are performed along the suction surface of a highly loaded turbine blade with a separation zone. Particular attention is paid to the aerodynamic behavior of the separation zone at different FSTIs at steady and periodic unsteady flow conditions. The objective of the research is (a) to quantify the effect of FSTIs on the dynamics of the separation bubble at steady inlet flow condition, and (b) to investigate the combined effects of FSTI and the unsteady wake flow on the behavior of the separation bubble. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.