The thermodynamic temperature of the point of inflection of the melting transition of Re-C, Pt-C and Co-C eutectics has been determined to be 2747.84 ± 0.35 K, 2011.43 ± 0.18 K and 1597.39 ± 0.13 K, respectively, and the thermodynamic temperature of the freezing transition of Cu has been determined to be 1357.80 ± 0.08 K, where the ± symbol represents 95% coverage. These results are the best consensus estimates obtained from measurements made using various spectroradiometric primary thermometry techniques by nine different national metrology institutes. The good agreement between the institutes suggests that spectroradiometric thermometry techniques are sufficiently mature (at least in those institutes) to allow the direct realization of thermodynamic temperature above 1234 K (rather than the use of a temperature scale) and that metal-carbon eutectics can be used as high-temperature fixed points for thermodynamic temperature dissemination. The results directly support the developing mise en pratique for the definition of the kelvin to include direct measurement of thermodynamic temperature.
Ikonen, E. (2017). Predictable quantum efficient detector based on n-type silicon photodiodes. Metrologia, 54(6) AbstractThe predictable quantum efficient detector (PQED) consists of two custom-made induced junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. Until now, all manufactured PQED photodiodes have been based on a structure where a SiO 2 layer is thermally grown on top of p-type silicon substrate. In this paper, we present the design, manufacturing, modelling and characterization of a new type of PQED, where the photodiodes have an Al 2 O 3 layer on top of n-type silicon substrate. Atomic layer deposition is used to deposit the layer to the desired thickness. Two sets of photodiodes with varying oxide thicknesses and substrate doping concentrations were fabricated. In order to predict recombination losses of charge carriers, a 3D model of the photodiode was built into Cogenda Genius semiconductor simulation software. It is important to note that a novel experimental method was developed to obtain values for the 3D model parameters. This makes the prediction of the PQED responsivity a completely autonomous process. Detectors were characterized for temperature dependence of dark current, spatial uniformity of responsivity, reflectance, linearity and absolute responsivity at the wavelengths of 488 nm and 532 nm. For both sets of photodiodes, the modelled and measured responsivities were generally in agreement within the measurement and modelling uncertainties of around 100 parts per million (ppm). There is, however, an indication that the modelled internal quantum deficiency may be underestimated by a similar amount. Moreover, the responsivities of the detectors were spatiallyOriginal content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. uniform within 30 ppm peak-to-peak variation. The results obtained in this research indicate that the n-type induced junction photodiode is a very promising alternative to the existing p-type detectors, and thus give additional credibility to the concept of modelled quantum detector serving as a primary standard. Furthermore, the manufacturing of PQEDs is no longer dependent on the availability of a certain type of very lightly doped p-type silicon wafers.
The eutectic alloys rhenium-carbon, platinum-carbon and cobalt-carbon have been proposed as reference standards for thermometry, with temperature and uncertainty values specified within the mise en pratique of the definition of the kelvin. These alloys have been investigated in a collaboration of eleven national measurement institutes and laboratories. Published results reported the point-of-inflection in the melting curve with extremely low uncertainties. However, to be considered as standards it is necessary to stipulate what phenomenon a temperature value has been ascribed to; specifically, this should be a thermodynamic state. Therefore, the data have been further evaluated and the equilibrium liquidus temperatures determined based on a consideration of limits and assuming a rectangular probability distribution. The values are: for rhenium-carbon 2747.91 ± 0.44 K, for platinum-carbon 2011.50 ± 0.22 K and for cobalt-carbon 1597.48 ± 0.14 K, with uncertainties at approximately a 95% coverage probability. It is proposed that these values could be used as Metrologia
This article gives the results of the measurements of the Institut National de Métrologie (INM) LaseRad cavity reflectance. These measurements were performed at several laser wavelengths: 325 nm, 488 nm, 514 nm, 543 nm, 633 nm and 1550 nm. The comparison of our measurements at 633 nm with those carried out by Cambridge Research & Instrumentation, Inc. (USA) five years ago shows satisfactory agreement. The discrepancy between these two measurements is within the measurement uncertainties in the range of 5 10 -5 . The change in the reflectance with wavelength is not negligible. The reflectance varies from 2.8 10 -4 to 1.10 10 -4 , according to the wavelength.
The quality of light emitted by lighting systems based on high brightness LEDs is studied using colorimetric parameters (chromaticity coordinates, correlated colour temperature and colour rendering index) when operating with different forms of electrical power supply (continuous and pulsed current). Uncertainties, calculated by Monte Carlo simulations applied to relative spectral measurements and colorimetric parameters are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.