The purpose of the study was to investigate the expression of ferroportin protein following treatments that affect systemic hepcidin. Administration of erythropoietin to C57BL/6J mice decreased systemic hepcidin expression; it also increased heart ferroportin protein content, determined by immunoblot in the membrane fraction, to approximately 200% of control values. This increase in heart ferroportin protein is very probably caused by a decrease in systemic hepcidin expression, in accordance with the classical regulation of ferroportin by hepcidin. However, the control of heart ferroportin protein by systemic hepcidin could apparently be overridden by changes in heart non-heme iron content since injection of ferric carboxymaltose to mice at 300 mg Fe/kg resulted in an increase in liver hepcidin expression, heart non-heme iron content, and also a threefold increase in heart ferroportin protein content. In a separate experiment, feeding an iron-deficient diet to young Wistar rats dramatically decreased liver hepcidin expression, while heart non-heme iron content and heart ferroportin protein content decreased to 50% of controls. It is, therefore, suggested that heart ferroportin protein is regulated primarily by the iron regulatory protein/iron-responsive element system and that the regulation of heart ferroportin by the hepcidin-ferroportin axis plays a secondary role.
Erythropoietin (EPO) downregulates hepcidin expression to increase the availability of iron; the downregulation of hepcidin is mediated by erythroferrone (ERFE) secreted by erythroblasts. Erythroblasts also express transferrin receptor 2 (TFR2); however, the possible role of TFR2 in hepcidin downregulation is unclear. The purpose of the study was to correlate liver expression of hepcidin with the expression of ERFE and TFR2 in murine bone marrow and spleen at 4, 16, 24, 48, 72 and 96 h following administration of a single dose of EPO. Splenic Fam132b expression increased 4 h after EPO injection; liver hepcidin mRNA was decreased at 16 h. In the spleen, expression of TFR2 and transferrin receptor (TFR1) proteins increased by an order of magnitude at 48 and 72 h after EPO treatment. The EPO-induced increase in splenic TFR2 and TFR1 was associated with an increase in the number of Tfr2- and Tfr1-expressing erythroblasts. Plasma exosomes prepared from EPO-treated mice displayed increased amount of TFR1 protein; however, no exosomal TFR2 was detected. Overall, the results confirm the importance of ERFE in stress erythropoiesis, support the role of TFR2 in erythroid cell development, and highlight possible differences in the removal of TFR2 and TFR1 from erythroid cell membranes.
This publication analyses current literary knowledge on selected topics in the fields of oral health and pathology, with a particular emphasis on the potential roles of the oral microbiome and preventative approaches to oral afflictions. An important association with floral dysbiosis has been documented in important oral conditions, sometimes as a predisposing factor and at other times as a result thereof. However, much remains to be elucidated regarding the specific mechanisms at play, as well as their meaning in clinical practice. Continued research into the pathophysiology of certain oral diseases is of particular importance considering how widespread they are. A specific emphasis should be placed on understanding the exact mechanisms through which the microbiota facilitates health, and when disturbed, sickness. And perhaps of most importance is the implementation of knowledge already acquired on disease prevention if the burden of oral diseases worldwide is to decline in the future.
The diagnostic and therapeutic use of radioactive isotopes is very popular in modern clinics. Radiative energy of various radioactive substances is used.Of particular interest are those radioactive isotopes that have a selective ability to absorb and concentrate in individual organs. Such isotopes include radioactive iodine - J131, which is widely used for functional diagnosis of the thyroid gland and in the treatment of some thyroid diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.