Nuclear charge radii are sensitive probes of different aspects of the nucleon–nucleon interaction and the bulk properties of nuclear matter, providing a stringent test and challenge for nuclear theory. Experimental evidence suggested a new magic neutron number at N = 32 (refs. 1–3) in the calcium region, whereas the unexpectedly large increases in the charge radii4,5 open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with β-decay detection, we were able to extend charge radii measurements of potassium isotopes beyond N = 32. Here we provide a charge radius measurement of 52K. It does not show a signature of magic behaviour at N = 32 in potassium. The results are interpreted with two state-of-the-art nuclear theories. The coupled cluster theory reproduces the odd–even variations in charge radii but not the notable increase beyond N = 28. This rise is well captured by Fayans nuclear density functional theory, which, however, overestimates the odd–even staggering effect in charge radii. These findings highlight our limited understanding of the nuclear size of neutron-rich systems, and expose problems that are present in some of the best current models of nuclear theory.
We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10 5 positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10 7 cm −3 is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields. C 2015 AIP Publishing LLC. [http://dx
We report measurements of the fluorescence lifetimes of positronium (Ps) atoms with principal quantum numbers n = 10-19. Ps atoms in Rydberg-Stark states were produced via a two-color two-step 1 3 S → 2 3 P → n 3 S /n 3 D excitation scheme and subsequently detected after traveling 1.2 m. The measured time-of-flight distributions were used to determine the mean lifetimes of the Rydberg levels, yielding values ranging from 3 μs to 26 μs. Our data are in accord with the expected radiative lifetimes of Rydberg-Stark states of Ps.
We report measurements and the results of calculations demonstrating that the annihilation dynamics of positronium (Ps) atoms can be controlled by Stark and Zeeman mixing of optically excited states. In the experiments a trap-based pulsed positron beam was employed to generate a dilute Ps gas with a density of ∼10 7 cm −3 using a porous silica target. These atoms were excited via 1 3 S 1 → 2 3 P J transitions in parallel electric and magnetic fields using a nanosecond pulsed dye laser, and Ps annihilation was measured using single-shot lifetime spectroscopy. The composition of the excited n = 2 sublevels was controlled by varying the polarization of the excitation laser radiation and the strength of the electric and magnetic fields in the excitation region. The overall decay rates of the excited states can vary by a large amount, owing to the enormous differences between the annihilation and florescence lifetimes of the accessible field-free states. The energy-level structure, spectral intensities, and florescence and annihilation lifetimes in the presence of the fields were determined from the eigenvalues and eigenvectors of the complete n = 2 Hamiltonian matrix in an |nS J M J basis. Using these data as the input to a Monte Carlo model yielded calculated values which could be compared with experimentally measured quantities; qualitative agreement with the measurements was found. Varying the electric field in the presence of a weak parallel magnetic field provides control over the amount of level mixing that occurs, making it possible to increase or decrease the Ps lifetime. Field-controlled Ps decay can be used as an ionization-free detection method. Conversely, increasing the excited-state lifetime can potentially be exploited to optimize multistep excitation processes using mixed intermediate states. This will be useful either in minimizing losses through intermediate-state decay during excitation or by making it possible to separate excitation laser pulses in time. In addition, the adiabatic extraction of appropriate eigenstates from the electric field in which they are excited can, in principle, be used to prepare pure 2 3 S 1 atoms. The availability of atoms in these states produced via single-photon excitation will facilitate high-resolution microwave spectroscopy of the Ps n = 2 fine structure.
We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO 4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO 4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO 4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.