Medroxyprogesterone acetate (MPA) has been shown to be teratogenic in rabbits but not in rats or mice (Andrew and Staples, '77). Since normal steroid action appears to be mediated, in large part, through interaction with specific steroid receptors, we postulated that the species difference in teratogenicity might be due to a difference in the interaction of MPA with target cells. A primary event in steroid-cell interaction is the binding of a steroid to intracellular receptors. Studies were initiated to measure the specific nature of MPA binding to glucocorticoid and progestin receptors in appropriate rat and rabbit target tissues. The competition of MPA with 3H-dexamethasone binding in liver cytosol (glucocorticoid receptor) and with 3H-progesterone binding in uterine cytosol (progesterone receptor) was determined. In rabbit liver cytosol MPA was as effective at competing for specific dexamethasone binding as the natural glucocorticoids and considerably more effective than the nonspecific steroids. In rat liver cytosol MPA was only 10% as effective as the natural glucocorticoids, and the competition could not be distinguished from that of nonspecific steroids. A similar species difference was not seen in uterine cytosol; MPA competed with progesterone in a similar fashion in both rat and rabbit. These data demonstrate a distinct species difference in the competitive nature of MPA for the glucocorticoid receptor but not for the progestin receptor. The results suggest that MPA, or possibly a metabolite, may be teratogenic in rabbits by binding with specific glucocorticoid receptors to inhibit or alter normal steroidal function in embryo-fetal development.Medroxyprogesterone acetate (MPA, 6a-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.